

Course Specifications

Valid as from the academic year 2024-2025

Bioinformatics (1002610)

Course size	(nominal values; actual valu	ies may depend on programm	ne)		
Credits 5.0	Study time 150 h				
Course offerings in acad	emic year 2025-2026				
A (semester 1)	English	Gent			
Lecturers in academic ye	ar 2025-2026				
Van Criekinge, Wim LA26			LA26	lecturer-in-charge	
Offered in the following programmes in 2025-2026				crdts	offering
Master of Science in Bioscience Engineering: Cell and Gene Biotechnology				5	A
Exchange Programı level)	ne in Bioscience Engineering:	Cell and Gene Biotechnology	(master's	5	А
Teaching languages					
English					
Keywords					
	ence analysis, gene structure en Markov models, biological d				
Position of the course					
aspects of biologica	nformatics focuses on the algo l datamanagement and -explo ical and computational backgo n.	pitation. It complements the	n for		
Contents					
	informatics courses at foreigr g the background of the bio-e ial for this course:		g		
1. Databases: types, databases	querying, design, internet-asp	ects, existing biological			
2. Computational m	olecular biology:				
2.1. String and seque sequence assembly	nce algorithms: similarity of s	sequences, (multiple) alignme	ents,		
-	phylogenetic trees, parsimon				
	is: interval graphs, physical m atistics: hidden Markov model				
	tions: gene discovery, structur	· •	ion		
	be combined in a consistent i omputational aspects and the		een		
and paper and by ov	miliarize the student with the vn implementation (e.g. in Per uate some of the many availa	rl). The exercises will also sho	W		
Initial competences					
Mathematics and co	mputer science courses on Ba	chelor level.			

- 1 Clear understanding of what Bioinformatics is
- 2 A working knowledge of biological databases
- 3 Knowledge in algorithms used in sequence manipulations (alignement, assembly and pattern recognition)
- 4 Understanding of protein modeling and phylogeny
- 5 Understanding in how bioinformatics can be applied in white, green, blue and red biotechnology

Conditions for credit contract

Access to this course unit via a credit contract is determined after successful competences assessment

Conditions for exam contract

This course unit cannot be taken via an exam contract

Teaching methods

Seminar, Lecture, Independent work

Extra information on the teaching methods

Theory: oral lectures

Exercises: computer and paper exercises

Study material

None

References

On-line forum (http://www.bioinformatics.be)

Course content-related study coaching

On-line forum (http://www.bioinformatics.be)

Assessment moments

end-of-term assessment

Examination methods in case of periodic assessment during the first examination period

Oral assessment

Examination methods in case of periodic assessment during the second examination period

Oral assessment

Examination methods in case of permanent assessment

Possibilities of retake in case of permanent assessment

not applicable

Extra information on the examination methods

Theory: period aligned evaluation (50%) Exercises: period aligned evaluation (50%) Theory: oral (closed book) examination Exercises: written/computer (open book) examination

Calculation of the examination mark

Theory: period aligned evaluation (50%) Exercises: period aligned evaluation (50%) Students who eschew period aligned and/or non-period aligned evaluations for this course unit may be failed by the examiner.