Course Specifications Valid in the academic year 2023-2024 # **Bayesian Statistics (C003400)** Course size (nominal values; actual values may depend on programme) Credits 5.0 Study time 150 h Course offerings in academic year 2023-2024 Lecturers in academic year 2023-2024 Offered in the following programmes in 2023-2024 crdts offering #### Teaching languages English #### Keywords Bayes theorem, probability, regression, classification, model building, Markov Chain Monte Carlo #### Position of the course Familiarize the students with the principles of Bayesian estimation. The students are expected to learn how Bayesian inference differs from classical inference. Moreover, the students should be able to use Bayesian techniques correctly in practical applications and they acquire the skills to interpret obtained results in a meaningful way. This course builds on the content of 'principles of statistical inference' and assumes the student has acquired the skills taught in Statistical Computing'. # Contents #### Bayesian concepts: - · Bayesian versus frequentist probability - exchangeability and the likelihood principle - · choice of prior distributions - the likelihood function - summarizing the posterior distribution - · conjugate priors - Markov Chain Monte Carlo methods: Gibbs sampler, Metropolis-Hastings, slice sampling, etc. # Bayesian estimation of the following models: - (multivariate) linear regression - · choice models: logit, probit, multinomial - longitudinal data analysis - · Bayesian hypothesis testing - · Bayesian variable selection # Computer labs using the following software: - R - JAGS (using the rjags package in R) #### Initial competences Having successfully completed introductory courses in basic probability, statistics and linear models. Experience with the statistical programming language R. #### Final competences (Approved) 1 - 1 The student knows basic Bayesian methods. - 2 The student understands the difference between Bayesian and frequentist estimation. - 3 The student is able to read and understand scientific literature in their domain of expertise that makes use of Bayesian methods. - 4 The student is familiar with the software used in the pc-labs. - 5 The student is able to apply Bayesian methods. - 6 The student can interpret the results of a Bayesian analysis. - 7 The student can report the results of a Bayesian analysis. #### Conditions for credit contract Access to this course unit via a credit contract is determined after successful competences assessment #### Conditions for exam contract This course unit cannot be taken via an exam contract #### Teaching methods Seminar, Lecture, Independent work #### Extra information on the teaching methods Ufora will be used to ensure a smooth organisation and follow-up of the practical assignments. #### Learning materials and price A syllabus is available. Price: 10 EUR #### References Albert, J. (2007). Bayesian Computation with R, Springer, New York (USA). Kruschke, J.K. (2011). Doing Bayesian Data Analysis, Elsevier, Oxford (UK). Bernardo J.M. And Smith, A.F.M. (2002). Bayesian Theory, Wiley, New York (USA). # Course content-related study coaching The exercises and practical assignments are supervised by the lecturer. #### **Assessment moments** end-of-term and continuous assessment #### Examination methods in case of periodic assessment during the first examination period Oral assessment, Assignment ### Examination methods in case of periodic assessment during the second examination period Oral assessment, Assignment #### Examination methods in case of permanent assessment Assignment # Possibilities of retake in case of permanent assessment examination during the second examination period is possible #### Extra information on the examination methods The project work involves solving a real life problem using Bayesian inference. The result of the project work is a written report that should satisfy scientific and professional standards. The insight of individual students in the statistical concepts, analyses and the data is evaluated on the oral exam. A second examination for the project is possible. # Calculation of the examination mark The total mark is a weighted average of: - Project work (10/20) - Oral exam (10/20) (Approved) 2