

# Course Specifications

Valid in the academic year 2023-2024

## Informatics (E015041)

Course size (nominal values; actual values may depend on programme)

Credits 6.0 Study time 180 h

## Course offerings and teaching methods in academic year 2023-2024

A (Year) Dutch Gent lecture

independent work

seminar

#### Lecturers in academic year 2023-2024

| Dhoedt, Bart TW05                                                                |             | lecturer-in-charge |          |
|----------------------------------------------------------------------------------|-------------|--------------------|----------|
| Offered in the following programmes in 2023-2024                                 |             | crdts              | offering |
| Bachelor of Science in Engineering(main subject Biomedical Engineering)          |             | 6                  | Α        |
| Bachelor of Science in Engineering(main subject Chemical Engineering an Science) | d Materials | 6                  | Α        |
| Bachelor of Science in Engineering(main subject Civil Engineering)               |             | 6                  | Α        |
| Bachelor of Science in Engineering(main subject Computer Science Engine          | eering)     | 6                  | Α        |
| Bachelor of Science in Engineering(main subject Electrical Engineering)          |             | 6                  | Α        |
| Bachelor of Science in Engineering(main subject Electromechanical Engin          | eering)     | 6                  | Α        |
| Bachelor of Science in Engineering(main subject Engineering Physics)             |             | 6                  | Α        |
| Bachelor of Science in Engineering (Joint Section)                               |             | 6                  | Α        |
| Preparatory Course Master of Science in Biomedical Engineering                   |             | 6                  | Α        |

## Teaching languages

Dutch

## Keywords

Algorithm, programming, Python

#### Position of the course

This course is the first contact with computer science; it aims at introducing the basic terminology, the basic computer programming knowledge, and the "algorithmic thinking", using the Python programming language. This course is a prerequisite for the engineering disciplines "electrical engineering" and "computer science".

#### Contents

- Basis data types (variables, operations, operators)
- Control structures and lists (loops, decisions, functions, recursion)
- Exception handling (applied tot input/output)
- · Introduction to algorithms and complexity
- Arrays in NumPy (homogenous arrays, arrays in higher dimensions, vectorisation, visualisation)
- More advanced data structures (strings, dictionaries and sets)
- Object orientation (class definition, (static) fields and methods, operator overloading, aggregation/composition, inheritance, polymorfism)

#### Initial competences

Secondary education.

## Final competences

- 1 To master the structured programming paradigm and to realize a Python program, using this structured programming paradigm.
- 2 To master the basic concepts of objectorientation and to realize an objectoriented program in

(Approved) 1

Python.

3 To design an algorithm solving a given problem, and to assess the complexity of this

## Conditions for credit contract

Access to this course unit via a credit contract is determined after successful competences assessment

#### Conditions for exam contract

This course unit cannot be taken via an exam contract

#### Teaching methods

Seminar, Lecture, Independent work

#### Learning materials and price

Electronic course material is freely available in Ufora.

#### References

- 1 A primer on scientific computing with Python, Hans Petter Langtangen, Springer
- 2 An introduction to Computation and Programming using Python, John V. Guttag, MIT Press
- 3 Learning Python, Mark Lutz, O'Reilly

#### Course content-related study coaching

The lecturer is available before and after classroom lectures. Personal coaching by the lecturer as scheduled. Additional tutoring services are available.

## **Assessment moments**

end-of-term and continuous assessment

## Examination methods in case of periodic assessment during the first examination period

Written assessment open-book

#### Examination methods in case of periodic assessment during the second examination period

Written assessment open-book

#### Examination methods in case of permanent assessment

Written assessment open-book

## Possibilities of retake in case of permanent assessment

examination during the second examination period is not possible

#### Extra information on the examination methods

- During semester / permanent evaluation: four mandatory written tests with open book (exact dates will be announced at the start of each semester).
- During examination period: written open-book examination.

### Calculation of the examination mark

#### Continuous assessment:

The scores on the four tests T1, T2, T3 and T4 (all marked out of 20), form a weighted score of respectively 20%, 30%, 20% and 30%, thus T' = 0.2 T1 + 0.3 T2 + 0.2 T3 + 0.3 T4

The total result of the permanent evaluation T, is determined as follows:

- if T' < 10 then T = T'
- if  $10 \le T' < 17$  then T = T' + 3
- if T' ≥ 17 then T = 20

End-of-term evaluation: written examination (marked out of 20, score E)

## Calculation of the final mark in the second-term examination period:

- If  $E \ge 8$  then the final mark equals max(0.4 T + 0.6 E; 0.1 T + 0.9 E) 2A
- If E < 8 then the final mark equals E 2A

A equals the number of tests for which the student was illegitimately absent (A = 0, 1, 2, 3 or 4). For each test in which the student did not participate, two points will be deducted from the final mark (2A = 0, -2 or -4).

## Calculation of the final mark in the resit examination period:

- If E  $\geq$  8 then the final mark equals max(0.4 T + 0.6 E; E)
- If E < 8 then the final mark equals E

(Approved) 2

(Approved) 3