

Course Specifications

Valid in the academic year 2023-2024

Computational Solutions of Wave Problems (E022700)

Course size	(nominal values; actual values may depend on programme)					
Credits 6.0	Study time 180 h					
Course offerings and teaching methods in academic year 2023-2024						
A (semester 1)	English Gent		lecture			
			gr	oup work		
			se	minar		
B (semester 1)	Dutch	Gent	gr	group work		30.0h
Lecturers in academic	year 2023-2024					
Botteldooren, Dick			TW05	lecturer-in-charge		
Cools, Kristof			TW05	co-lecturer		
Offered in the following programmes in 2023-2024				crdts	offering	
Bridging Programme Master of Science in Engineering Physics				6	А	
Master of Science in Electrical Engineering (main subject Electronic Circuits and Systems)				s) 6	А	
Master of Science in Engineering Physics				6	В	
Master of Science in Engineering Physics				6	А	

Teaching languages

English, Dutch

Keywords

computational techniques, finite elements, finite differences, integral equations

Position of the course

The student learns about different techniques for solving wave equations mainly by personal contact with these techniques. The course starts from different application domains: electromagnetism, optics, acoustics, to derive a general problem description. Various solution methods are proposed, always refering to typical areas of application. The main focus remains numerical solution of wave-related problems. Other courses will generate insight and forward the knowledge required for designing electromagnetic, optic or acoustic systems.

Contents

- Introduction: Uniform theory of wave propagation and its relation to elektromagnetics, optics, acoustics, ..., Computational methods related to different application areas
- Solutions based on discretising difference equations: Frequency domain solution: finite elements, Pade, ..., Time domain solution: Finite difference time domain, finite volume time domain, ..., Physical boundary conditions and perfectly absorbing boundaries
- Integral equation techniques: Boundary integral methods: Greens functions, Fredholm 162, internal resonance, ..., Domain integration techniques
- High frequency approximations: Ray theory and diffraction theory, Basic diffractors and nonspecular reflection on rough and periodic surfaces
- Paraxial approximation: Basic idea, disretisation and spatial fourier transform techniques, wide angle

Initial competences

Wave equations for different areas of application

Final competences

1 Students have a thorough understanding of the possible computational methods for solving wave equations full wave or in approximate form.

- 2 Students have insight into how wave problems from very different disciplines reduce to a generic problem; they recognize the important parameters for selecting a particular computational solution method; frequency domain time domain equivalence of boundary conditions; they recognize potential and limitations of ray theory and diffraction theory; emergence of non-specular reflections on periodic and rough surfaces; range of applicability of paraxial approximation of wave problems.
- 3 Students have the skills required to translate solutions of a generic wave problem to a specific discipline; to pick the most suitable computational technique for solving wave problems; to deploy finite element models in frequency domain, finite element and finite difference models in time domain; they are able to discretise boundary conditions in frequency and time domain approximations; to deploy boundary element approximations; and are able to approximate a wave problem with ray tracing techniques and to solve paraxial equations for typical situations.
- 4 Students obtain the skills to cooperate and communication within small groups on an open ended problem and learn to plan a joint undertaking that takes several months.
 5 Students are able to take design decisions related to a large numerical project.

Conditions for credit contract

Access to this course unit via a credit contract is determined after successful competences assessment

Conditions for exam contract

This course unit cannot be taken via an exam contract

Teaching methods

Group work, Seminar, Lecture, Independent work

Extra information on the teaching methods

Projects; Computer-assisted problem solving; Classroom lectures

Learning materials and price

Annotated slides and additional scientific reading material; syllabus (10EUR in print, free electronic version on UFora) in english.

References

see slides

Course content-related study coaching

Assessment moments

end-of-term and continuous assessment

Examination methods in case of periodic assessment during the first examination period

Oral assessment open-book, Assignment

Examination methods in case of periodic assessment during the second examination period

Oral assessment open-book, Assignment

Examination methods in case of permanent assessment

Skills test

Possibilities of retake in case of permanent assessment

examination during the second examination period is possible in modified form

Extra information on the examination methods

During examination period: oral open-book exam; graded project reports During semester: graded computer exercises (4) spread over semester starting in third week. Second chance: Possible in adapted form

Calculation of the examination mark

Computer exercises throughout semester 30%, during examination period = discussion of project reports and theoretical questions 70%.