

# Course Specifications

Valid in the academic year 2023-2024

# Mathematics II (E610005)

| Course size<br>Credits 6.0                                                                       | (nominal values; actual values may depend on programme)<br>Study time 180 h |               |      |                    |          |
|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------|------|--------------------|----------|
| Course offerings and teaching methods in academic year 2023-2024                                 |                                                                             |               |      |                    |          |
| A (semester 2)                                                                                   | Dutch                                                                       | Kortrijk lect |      | cture              |          |
|                                                                                                  |                                                                             |               | se   | seminar            |          |
| Lecturers in academic y                                                                          | /ear 2023-2024                                                              |               |      |                    |          |
| De Vos, Oriana                                                                                   |                                                                             |               | TW05 | staff membe        | r        |
| Audenaert, Pieter TW05                                                                           |                                                                             |               | TW05 | lecturer-in-charge |          |
| Offered in the following programmes in 2023-2024                                                 |                                                                             |               |      | crdts              | offering |
| Bachelor of Science in Engineering Technology(main subject Machine and Production<br>Automation) |                                                                             |               |      | 6                  | А        |
| Bachelor of Science in Industrial Design Engineering Technology                                  |                                                                             |               |      | 6                  | А        |
| Bachelor of Science in Engineering Technology (Joint Section)                                    |                                                                             |               | 6    | А                  |          |
| Linking Course Master of Science in Industrial Design Engineering Technology                     |                                                                             |               |      | 6                  | А        |
| Linking Course Master of Science in Machine and Production Automation Engineering                |                                                                             |               |      | 6                  | А        |

Technology

# Teaching languages

Dutch

#### Keywords

Solid geometry, functions of multiple variables, double integrals, differential equations, linear algebra

#### Position of the course

This course aims to provide the student with some fundamental concepts, techniques, deductions and solution methods to solve a variety of engineering problems.

#### Contents

# Solid geometry:

- Lines and planes
- Angles and distances
- Quadric surfaces
- Coordinate systems

#### Calculus:

- Functions of multiple variables: partial derivatives, total derivative, gradient, extrema
- Double integrals: calculation, coordinate transformations
- Differential equations: structure of the solution space, first order equations, higher order equations

### Linear algebra:

- Matrices and determinants
- Linear systems
- Linear transformations
- Eigenvalues and eigenvectors

#### Initial competences

Mathematics II relies on some final competences of Mathematics I

#### **Final competences**

- 1 Being able to work with and have insight in lines and planes in space
- 2 Being able to work with and have insight in angles and distances in space
- 3 Being able to work with and have insight in quadric surfaces in space
- 4 Being able to work with and have insight in coordinate systems in space
- 5 Being able to work with and have insight in functions of multiple variables (partial derivatives, total derivative, gradient, extrema)
- 6 Being able to work with and have insight in double integrals (calculation, coordinate transformations)
- 7 Being able to work with and have insight in differential equations (structure of the solution space, first order equations, higher order equations)
- 8 Being able to work with and have insight in matrices and determinants
- 9 Being able to work with and have insight in linear systems
- 10 Being able to work with and have insight in linear transformations
- 11 Being able to work with and have insight in eigenvalues and eigenvectors
- 12 Communicating a reasoning or computation in a correct and structured manner
- using correct language and mathematical notations
- 13 Computational competence without calculator

#### Conditions for credit contract

Access to this course unit via a credit contract is determined after successful competences assessment

#### Conditions for exam contract

This course unit cannot be taken via an exam contract

#### **Teaching methods**

Seminar, Lecture

#### Learning materials and price

• Course notes in Dutch are available

#### References

- Elements of Differential Geometry, Millman & Parker, Prentice-Hall
- Differentiaalvergelijkingen, van Horssen, Epsilon Uitgaven
- Vectoren en Matrices, van de Craats, Epsilon Uitgaven

#### Course content-related study coaching

- The lecturer can be asked questions immediately after the lecture
- Tutor service

#### Assessment moments

end-of-term and continuous assessment

#### Examination methods in case of periodic assessment during the first examination period

Written assessment

#### Examination methods in case of periodic assessment during the second examination period

Written assessment

#### Examination methods in case of permanent assessment

Written assessment

#### Possibilities of retake in case of permanent assessment

examination during the second examination period is not possible

#### Calculation of the examination mark

Calculation:

- Unlawful absence on an evaluation results in a mark zero for that evaluation
- 1st period: total = (1/4)\*NPE + (3/4)\*PE1
- 2nd period: total = max(PE2, (1/4)\*NPE + (3/4)\*PE2)

Abbreviations:

- NPE = mark Non-Periodic Evaluation
- PE1 = mark Periodic Evaluation 1
- PE2 = mark Periodic Evaluation 2