

# Course Specifications

Valid as from the academic year 2023-2024

# Mathematics II (E610005)

Course size (nominal values; actual values may depend on programme)

Credits 6.0 Study time 180 h

# Course offerings and teaching methods in academic year 2023-2024

A (semester 2) Dutch Kortrijk lecture

seminar

## Lecturers in academic year 2023-2024

| De Vos, Oriana<br>Audenaert, Pieter                                                           | TW05<br>TW05 |       |          |
|-----------------------------------------------------------------------------------------------|--------------|-------|----------|
| Offered in the following programmes in 2023-2024                                              |              | crdts | offering |
| Bachelor of Science in Engineering Technology(main subject Machine and Production Automation) |              | 6     | Α        |
| Bachelor of Science in Industrial Design Engineering Technology                               |              | 6     | Α        |
| Bachelor of Science in Engineering Technology (Joint Section)                                 |              | 6     | Α        |
| Linking Course Master of Science in Industrial Design Engineering Technology                  |              | 6     | Α        |
| Linking Course Master of Science in Machine and Production Automation Engineering Technology  |              | 6     | Α        |

# Teaching languages

Dutch

#### Keywords

Solid geometry, functions of multiple variables, double integrals, differential equations, linear algebra

# Position of the course

This course aims to provide the student with some fundamental concepts, techniques, deductions and solution methods to solve a variety of engineering problems.

# Contents

# Solid geometry:

- · Lines and planes
- · Angles and distances
- · Quadric surfaces
- · Coordinate systems

#### Calculus:

- Functions of multiple variables: partial derivatives, total derivative, gradient, extrema
- Double integrals: calculation, coordinate transformations
- Differential equations: structure of the solution space, first order equations, higher order equations

# Linear algebra:

- · Matrices and determinants
- Linear systems
- · Linear transformations
- · Eigenvalues and eigenvectors

# Initial competences

Mathematics II relies on some final competences of Mathematics I

# Final competences

1 Being able to work with and have insight in lines and planes in space (Approved)

1

- 2 Being able to work with and have insight in angles and distances in space
- 3 Being able to work with and have insight in quadric surfaces in space
- 4 Being able to work with and have insight in coordinate systems in space
- 5 Being able to work with and have insight in functions of multiple variables (partial derivatives, total derivative, gradient, extrema)
- 6 Being able to work with and have insight in double integrals (calculation, coordinate transformations)
- 7 Being able to work with and have insight in differential equations (structure of the solution space, first order equations, higher order equations)
- 8 Being able to work with and have insight in matrices and determinants
- 9 Being able to work with and have insight in linear systems
- 10 Being able to work with and have insight in linear transformations
- 11 Being able to work with and have insight in eigenvalues and eigenvectors
- 12 Communicating a reasoning or computation in a correct and structured manner using correct language and mathematical notations
- 13 Computational competence without calculator

#### Conditions for credit contract

Access to this course unit via a credit contract is determined after successful competences assessment

#### Conditions for exam contract

This course unit cannot be taken via an exam contract

# Teaching methods

Seminar, Lecture

## Learning materials and price

· Course notes in Dutch are available

## References

- Elements of Differential Geometry, Millman & Parker, Prentice-Hall
- Differentiaalvergelijkingen, van Horssen, Epsilon Uitgaven
- Vectoren en Matrices, van de Craats, Epsilon Uitgaven

## Course content-related study coaching

- The lecturer can be asked questions immediately after the lecture
- Tutor service

# Assessment moments

end-of-term and continuous assessment

## Examination methods in case of periodic assessment during the first examination period

Written assessment

# Examination methods in case of periodic assessment during the second examination period

Written assessment

# Examination methods in case of permanent assessment

Written assessment

# Possibilities of retake in case of permanent assessment

examination during the second examination period is not possible

# Calculation of the examination mark

#### Calculation:

- · Unlawful absence on an evaluation results in a mark zero for that evaluation
- 1st period: total = (1/4)\*NPE + (3/4)\*PE1
- 2nd period: total = max(PE2, (1/4)\*NPE + (3/4)\*PE2)

## Abbreviations:

- NPE = mark Non-Periodic Evaluation
- PE1 = mark Periodic Evaluation 1
- PE2 = mark Periodic Evaluation 2

(Approved) 2