
Informatics (O000096)

Course
Specifications

Valid as from the academic year 2023-2024

Course size

Course offerings and teaching methods in academic year 2023-2024

A (Year) English lecture

seminar

Incheon

Lecturers in academic year 2023-2024

De Neve, Wesley KR01 lecturer-in-charge

Offered in the following programmes in 2023-2024

Bachelor of Science in Environmental Technology 10 A
Bachelor of Science in Food Technology 10 A
Bachelor of Science in Molecular Biotechnology 10 A
Joint Section Bachelor of Science in Environmental Technology, Food Technology and
Molecular Biotechnology

10 A

crdts offering

Credits 10.0

(nominal values; actual values may depend on programme)

Study time 300 h

Teaching languages

English

Keywords

Command line, Computational thinking, Creative problem solving, Programming, Python, SQL,
UNIX

Position of the course

Scientists and engineers are regularly confronted with time-consuming and repetitive tasks
when having to process and analyse data, namely collecting information from websites,
converting files from one format to another, and analysing, summarizing, and visualizing the
information obtained. Moreover, given that data are often arriving at an exponential rate,
present-day scientists and engineers are required to be able to automate the aforementioned
tasks, in order to speed up their daily job routines.

This course teaches students how to describe time-consuming and repetitive tasks in such a
way that they can be performed automatically by a (network-based) computer system. To that
end, students will acquire the necessary skills for computer-based creative problem solving
through learning to think and work in (1) Python, a popular programming language, and (2)
UNIX, the workhorse operating system of science and engineering. The computer problems
that need to be solved are taken from different scientific disciplines, including mathematics,
biology, chemistry, physics, and computer science.

To take part in this course, students do not need to have any prior programming experience.
However, to be successful for this course, students need to have an aptitude for mathematics
and logic. In addition, given that this course follows a ‘learning by doing’ and a ‘learning from
mistakes’ approach, students need to have a willingness to solve computer problems on a
regular basis.

Contents

Programming is the process of designing, writing, testing, debugging, and maintaining the
source code of computer programs. This requires knowledge of the syntax and the semantics
of a programming language, as well as the ability to write programs in that language.
Additionally, and maybe most importantly, when writing computer programs, one must learn
how to think like a programmer. This process of computational thinking (that is, learning how to
solve problems by programming) is a common theme throughout the whole course.

1(Approved)

https://studiekiezer.ugent.be/2023/bachelor-of-science-in-environmental-technology-en
https://studiekiezer.ugent.be/2023/bachelor-of-science-in-environmental-technology-en
https://studiekiezer.ugent.be/2023/bachelor-of-science-in-environmental-technology-en
https://studiekiezer.ugent.be/2023/bachelor-of-science-in-food-technology-en
https://studiekiezer.ugent.be/2023/bachelor-of-science-in-food-technology-en
https://studiekiezer.ugent.be/2023/bachelor-of-science-in-food-technology-en
https://studiekiezer.ugent.be/2023/bachelor-of-science-in-molecular-biotechnology-en
https://studiekiezer.ugent.be/2023/bachelor-of-science-in-molecular-biotechnology-en
https://studiekiezer.ugent.be/2023/bachelor-of-science-in-molecular-biotechnology-en
https://studiekiezer.ugent.be/2023/joint-section-bachelor-of-science-in-environmental-technology-food-technology-and-molecular-biotechnology-en
https://studiekiezer.ugent.be/2023/joint-section-bachelor-of-science-in-environmental-technology-food-technology-and-molecular-biotechnology-en
https://studiekiezer.ugent.be/2023/joint-section-bachelor-of-science-in-environmental-technology-food-technology-and-molecular-biotechnology-en
https://studiekiezer.ugent.be/2023/joint-section-bachelor-of-science-in-environmental-technology-food-technology-and-molecular-biotechnology-en

In this course, students learn how to make use of the Python programming language to solve a
plethora of problems. To that end, attention is paid to:

• basic components: instructions, variables, data types, and operators;
• control structures: conditional statements, repetitive statements, and functions;
• data structures: strings, lists, tuples, dictionaries, sets, modules, and files;
• text files: reading, processing, and writing data; and
• object-oriented programming: objects, classes, attributes, methods, encapsulation,
• polymorphism, and inheritance.

Furthermore, in this course, students learn how to make use of UNIX-based tools to automate
repetitive or complex tasks. To that end, attention is paid to:

• the principles of UNIX-based operating systems;
• consulting technical documentation;
• running a remote interactive session (VPN, SSH);
• file systems;
• interactive command line usage;
• text file formats (HTML, XML, CSV, FASTA);
• filters, redirection, and pipes;
• regular expressions (regex);
• interactive text editing (e.g., through vim);
• automated text editing using edit commands; and
• the basics of shell scripting.

Finally, in this course, students learn how to make use of the Structured Query Language
(SQL) to communicate with a relational database.

Initial competences

An aptitude for mathematics and logic.

An interest in solving (scientific) problems.

Some basic computer knowledge is advantageous (prior programming skills are not required).

Final competences

1 Translate a task described in natural language into a program written in Python.
2 Execute a program written in Python by means of a computer, generating a correct result.
3 Test and debug a program written in Python.
4 Make the right choices between different alternatives when writing a program in Python,
1 taking into account performance (efficiency), coding style, and correctness.
5 Demonstrate a working knowledge about the basic principles of object-oriented
1 programming.
6 Automate repetitive and complex tasks by means of UNIX-based tools.
7 Work interactively and non-interactively with operating systems, computer networks, file
1 systems, and text editors.
8 Understand the structure of various text file formats, including HTML, XML, CSV, and
1 FASTA.
9 Apply SQL to communicate with a relational database.
10 Independently resolve error messages through critical usage of technical documentation
1 and online resources.

Conditions for credit contract

Access to this course unit via a credit contract is determined after successful competences assessment

Conditions for exam contract

This course unit cannot be taken via an exam contract

Teaching methods

Seminar, Lecture

Learning materials and price

Slides shown during the lectures will be made available on Ufora (in English), together with
additional learning materials (e.g., knowledge video clips, background information, links to
relevant websites, and previously used exams).

2(Approved)

Free digital tools like PyCharm for writing and debugging Python source code, the Online
Python Tutor for visualizing code execution, the Dodona online platform for automated
verification of the correctness of solutions written in Python, a local Linux shell (Bash, Z shell),
and a remote Linux shell (Red Hat Enterprise Linux on HPC-UGent).

Handbook (optional, for background information): William F. Punch, Richard Enbody (2017).
The Practice of Computing using Python. Third Edition. Addison Wesley, ISBN-13: 978-
0134379760. About $130.

Handbook (optional, for background information): Mark G. Sobell (2012). A Practical Guide to
Linux: Commands, Editors, and Shell Programming. Fourth Edition. Prentice Hall, ISBN-13:
978-0134774602. About $40.

Students are required to have a personal laptop for use in this course.

References

Mark Lutz (2009). Learning Python: Powerful Object-Oriented Programming. Fourth Edition.
O'Reilly Media, ISBN-13: 978-0596158064.

Mark Pilgrim (2009). Dive into Python. CreateSpace, ISBN-13: 978-1441413024. Free
download @ http://diveintopython.org.

Hans Peter Langtangen (2009). A Primer on Scientific Programming with Python. Springer,
ISBN-13: 978-3642024740.

Tony Gaddis (2009). Starting Out with Python. Pearson Education - Addison Wesley, ISBN-13:
978-0321549419.

Michael H. Goldwasser (2007). Object-Oriented Programming in Python. Prentice Hall, ISBN-
13: 978-0136150312.

Jason Kinser (2008). Python for Bioinformatics. Jones & Bartlett Publishers, ISBN-13: 978-
0763751869.

Sebastian Bassi (2009). Python for Bioinformatics. Chapman & Hall, ISBN-13: 978-
1584889298.

Mark G. Sobell (2012). A Practical Guide to Linux: Commands, Editors, and Shell
Programming. Fourth Edition. Prentice Hall, ISBN-13: 978-0134774602.

William F. Punch, Richard Enbody (2017). The Practice of Computing using Python. Third
Edition. Addison Wesley, ISBN-13: ISBN-13: 978-0133085044.

Steven Haddock and Casey Dunn (2010). Practical Computing for Biologists. First Edition.
Sinauer Associates, Inc, ISBN-13: 978-0878933914.

Ashley Shade, Tracy K. Teal (2015). Computing Workflows for Biologists: A Roadmap. PLOS
Biology.

Pavel A. Pevzner (2004). Educating Biologists in the 21st Century: Bioinformatics Scientists
versus Bioinformatics Technicians. Bioinformatics, Vol. 20, No. 14, pages 2159–2161.

Alejandra J. Magana, Manaz Taleyarkhan, Daniela Rivera Alvarado, Michael Kane, John
Springer, and Kari Clase (2014). A Survey of Scholarly Literature Describing the Field of
Bioinformatics Education and Bioinformatics Educational Research. CBE—Life Sciences
Education, Vol. 13, pages 607–623.

Course content-related study coaching

The syntax and the semantics of the programming language Python, the database
management language SQL, and selected UNIX tools are presented in the course slides and in
the course handbooks, and need to be acquired largely through (guided) self-study.

Solutions for selected computer exercises are discussed during the theory lectures so that

3(Approved)

students learn how computational skills can be applied in practice.

During the weekly supervised hands-on sessions, students themselves learn how to tackle
computational challenges by working on a series of mandatory computer exercises that need to
be solved independently. These computer exercises aim at bringing the theory into practice.

Dodona, a digital learning environment, gives students instant feedback on their solutions
submitted for the Python programming challenges, containing additional exercises for further
practicing.

After each deadline, example solutions for all exercises are made available on Ufora.

Information about the calculation of the different evaluation marks is communicated during the
theory lectures at the beginning and near the end of the first-term and the second-term
teaching activities.

Example examinations of previous years are made available on Ufora near the end of the first-
term and the second-term teaching activities.

Announcements on Ufora are used for counselling, giving feedback, and providing background
information.

Through individual appointments scheduled via email, the lecturer and the teaching assistants
are available for answering questions about the course in general (grading, examination), the
theory, and the exercises.

Assessment moments

end-of-term and continuous assessment

Examination methods in case of periodic assessment during the first examination period

Skills test

Examination methods in case of periodic assessment during the second examination period

Skills test

Examination methods in case of permanent assessment

Skills test

Possibilities of retake in case of permanent assessment

examination during the second examination period is not possible

Calculation of the examination mark

For the first-term examination period, the mark of the periodic evaluation (end-of-term
assessment) accounts for 75% of the partial examination mark for Term 1 and the mark of the
non-periodic evaluation (hands-on sessions; continuous assessment) accounts for 25% of the
partial examination mark for Term 1. To qualify for passing, both the mark of the periodic and
the non-periodic evaluation should be at least equal to 8/20 (40%). If that is not the case, then
the partial examination mark for Term 1, as obtained during the first-term examination period,
will be subject to an upper limit of 7/20. No second partial examination opportunity is
administered during the first-term resit examination period.

If the partial examination mark for Term 1, as obtained during the first-term examination period,
is higher than or equal to 10/20, then one partial examination is used during the second-term
examination period, only covering the course content of Term 2, with this partial examination
consisting of both a periodic and non-periodic evaluation.

If the partial examination mark for Term 1, as obtained during the first-term examination period,
is lower than 10/20, then two partial examinations are used during the second-term
examination period: a first partial examination covering the content of Term 1, only consisting of
a periodic evaluation, and a second partial examination covering the content of Term 2,
consisting of both a periodic and non-periodic evaluation.

Students who obtained a partial examination mark for Term 1 higher than or equal to 10/20
during the first-term examination period, may decide to retake the partial examination covering
the content of Term 1 during the second-term examination period, with this partial examination
only consisting of a periodic evaluation. When doing so, the mark obtained for the latter

4(Approved)

periodic evaluation is used for calculating the partial examination mark for Term 1 (that is, the
mark obtained for the periodic evaluation that took place during the first-term examination
period is discarded).

For the second-term examination period, the mark of the periodic evaluation accounts for
75% of the partial examination mark for Term 2 and the mark of the non-periodic evaluation
accounts for 25% of the partial examination mark for Term 2. To qualify for passing, both the
mark of the periodic and the non-periodic evaluation should be at least equal to 8/20 (40%). If
that is not the case, then the partial examination mark for Term 2, as obtained during the
second-term examination period, will be subject to an upper limit of 7/20.

During Term 2, the non-periodic evaluation for Term 1 cannot be retaken. Therefore, the partial
examination mark for Term 1 during the second-term examination period is calculated twice.
For the first calculation, the mark of the non-periodic evaluation, as obtained during Term 1,
accounts for 25% of the partial examination mark and the mark of the periodic evaluation, as
obtained for the Term 1 content during the second-term examination period, accounts for the
remaining 75% of the partial examination mark. For the second calculation, the partial
examination mark is equal to the mark of the periodic evaluation, as obtained for the Term 1
content during the second-term examination period (that is, the mark of the non-periodic
evaluation, as obtained during Term 1, is not taken into account). The partial examination mark
for Term 1 during the second-term examination period is then equal to the maximum of the
above two calculations. Note that the mark of the periodic evaluation, as obtained for the Term
1 content during the second-term examination period, should be at least equal to 8/20 (40%). If
that is not the case, then the partial examination mark for Term 1, as obtained during the
second-term examination period, will be subject to an upper limit of 7/20.

The final examination mark is the average of the partial examination mark for Term 1 and the
partial examination mark for Term 2. To qualify for passing (that is, to have a final examination
mark that is higher than or equal to 10/20), both partial examination marks should be higher
than or equal to 8/20 (40%).

During the second-term resit examination period, a third partial examination opportunity is
organized that covers the Term 1 content, as well as a second partial examination opportunity
that covers the Term 2 content, with both partial examination opportunities only consisting of a
periodic evaluation. Given that the non-periodic evaluation for Term 1 and the non-periodic
evaluation for Term 2 cannot be retaken during the second-term resit examination period, both
the partial examination mark for Term 1 and the partial examination mark for Term 2 are
calculated twice, following the approach and the conditions used for calculating the partial
examination mark for Term 1 during the second-term examination period. Furthermore, the final
examination mark is again the average of the partial examination mark for Term 1 and the
partial examination mark for Term 2, with both partial examination marks again having to be
higher than or equal to 8/20 (40%) in order to qualify for passing.

Marks for partial examinations can never be transferred to the second-term resit examination
period.

Throughout the yearlong Informatics course, the non-periodic evaluation is organized as
follows. During Term 1 of the yearlong Informatics course, students are asked to tackle 48
Python coding challenges (36 basic and 12 advanced), and during Term 2, students are asked
to tackle 12 Python coding challenges (8 basic and 4 advanced), 2 SQL problem statements (1
basic and 1 advanced), and 16 UNIX problem statements (11 basic and 5 advanced). Basic
exercises come with a low to intermediate complexity, whereas advanced exercises are more
challenging in nature (examination-level complexity). Binary grading (correct or not correct) is
used for the Python programming challenges, whereas partial grading is used for the SQL and
the UNIX exercises. During grading, advanced exercises get twice the weight of basic
exercises. The rounding approach for non-periodic evaluation marks is based on halves.

Students who eschew period aligned and/or non-period aligned evaluations for this course unit
may be failed by the examiner.

5(Approved)

6(Approved)

