

Course Specifications

Valid as from the academic year 2024-2025

Solid-state Physics and Semiconductors II (E024620)

Course size Credits 3.0	(nominal values; actual values may depend on programme) Study time 90 h				
Course offerings and t	eaching methods in academic yea	ır 2024-2025			
A (semester 2)	Dutch	Gent	se	eminar	
			рі	ractical	
			cture		
Lecturers in academic	year 2024-2025				
Detavernier, Christophe			WE04	lecturer-in-charge	
Minjauw, Matthias			WE04	co-lecturer	
Offered in the following programmes in 2024-2025				crdts	offering
Bachelor of Science in Engineering(main subject Engineering Physics)				3	А
Teaching languages					
Dutch					
Keywords					
Surfaces, crystal c superconductivity	lefects, nanostructures, semiconduc r, crystal growth	ctor junctions,			
Position of the course					
To got acquaintee	I with the physics of real crystals ar	nd crystals with small			

dimensions. To provide insight into processes and mechanisms governing the operation of semiconductor devices. To get acquainted with the phenomena and the theory of superconductivity.

Contents

- P-n junctions: Homojunctions, Heterojunctions
- Metal-semiconductor contacts and the MIS diode: Schottky barrier, Ohmic contact, MIS-diode and MOS
- Superconduction: Overview of experimental phenomena, Theoretical overview, Junctions of superconductors, High-Tc superconductors
- Surfaces and interfaces: Crystallography of surfaces, Surface states
- Crystal defects: Point defects, Dislocations and stacking faults
- Nanostructures: Quantum well, Quantum wires, Quantum dots
- Crystal growth: Growth techniques

Initial competences

Solid-state physices and semiconductors I

Final competences

- 1 Understanding the effect of electric fields and concentration gradients on the band structure in semiconductors.
- 2 Being able to draw and interpret energy band diagrams.
- 3 Using concepts from semiconductor physics to explain the operation of electronic components (p-n junction, heterojunction, metal/semiconductor contact, MOS structure).
- 4 Possess the practical skills for performing electrical measurements on semiconductor components.
- 5 Understanding the relationship between size and electronic properties of nanostructures and possess the scientific curiosity to explore them further.
- 6 Knowing key concepts related to superconductivity (e.g. Meissner effect, Cooper

pair, Josephson junction) and possess the scientific curiosity to explore them further.

- 7 Knowing key concepts related to defects in solids (vacancies, interstitials, color center, dislocations, stacking fault, surface, work function).
- 8 Knowing key concepts related to crystal growth and epitaxial growth.
- 9 Have the skills for solving exercises related to concepts in solid-state physics.

Conditions for credit contract

Access to this course unit via a credit contract is determined after successful competences assessment

Conditions for exam contract

This course unit cannot be taken via an exam contract

Teaching methods

Seminar, Lecture, Practical

Study material

Type: Syllabus

Name: Vastestoffysica en halfgeleiders II Indicative price: Free or paid by faculty Optional: no Language : Dutch Number of Pages : 152 Oldest Usable Edition : 2022 Available on Ufora : Yes Online Available : No Available in the Library : No Available through Student Association : No Additional information: -

References

C. Kittel, "Introduction to Solid State Physics", 7th edition, J. Wiley, New York
1996

Course content-related study coaching

Assessment moments

end-of-term and continuous assessment

Examination methods in case of periodic assessment during the first examination period

Oral assessment, Written assessment

Examination methods in case of periodic assessment during the second examination period

Oral assessment, Written assessment

Examination methods in case of permanent assessment

Skills test

Possibilities of retake in case of permanent assessment

examination during the second examination period is not possible

Extra information on the examination methods

- During examination period: theory exam is oral, with written preparation, closedbook; exercises as a written exam, open-book (lecture notes, no solutions to problems presented during the lectures) - problems.
- During semester: graded lab sessions. Frequency: 1 lab session half-way semester.

Calculation of the examination mark

Special conditions: 1 lab session, for 10% of the total result. The result of the lab work is transfered to the second exam period.