

Course Specifications

From the academic year 2024-2025 up to and including the academic year

Electrical Machine Design (E036611)

Course size	(nominal values; actual values may depend on programme)				
Credits 6.0	Study time 180 h				
Course offerings and to	eaching methods in academic y	/ear 2024-2025			
B (semester 1)	English	Gent	lecture		
	ser		minar		
Lecturers in academic	year 2024-2025				
Vandevelde, Lieven			TW08	lecturer-in-charge	
Sergeant, Peter			TW08	co-lecturer	
Offered in the following programmes in 2024-2025				crdts	offering
Bridging Programme Master of Science in Electromechanical Engineering(main subject				6	В
Electrical Power I	5 57				
Master of Science in Electromechanical Engineering(main subject Electrical Power				6	В
Engineering)					

Teaching languages

English, Dutch

Keywords

design, electrical machines, transformers

Position of the course

In this course the device aspect of transformers and rotating electrical machines is the central theme. The aim is to present a global view on the main aspects and problems related to the design of rotating electrical machines and transformers, rather than a pure enumeration of heuristic design rules. In the excercises more specific design tasks are imposed, employing numerical design resources (finite element method). In the project, the design of various electrical motors will be investigated, i.a., the Toyota Hybrid Synergy Drive and/or the Tesla Model S.

Contents

- Transformers: Construction, Magnetic field pattern
- Windings of AC machines: Designs, E.m.f. and m.m.f.
- Main flux and leakage flux in electrical machines: Main flux and leakage flux
- Parasitic effects: Parasitic torques, Vibrations and noise, Losses
- Eddy currents: Basic equations, Applications
- Materials: Electrical steel, Permanent magnets, Isolation
- Numerical methods: Finite element method, Applications

Initial competences

courses "Electromagnetic Energy Conversion" and "Electrical Drives" or other basic courses on electromagnetism and electrical machines

Final competences

- 1 Know the design and materials of the most common electrical machines.
- 2 Analyse the windings of AC machines.
- 3 Use numerical methods for magnetic field computations in electrical machines.
- 4 Analyse parasitic effects (vibrations, noise, torques).
- 5 Understand skin and proximity effects.

Conditions for credit contract

Access to this course unit via a credit contract is determined after successful competences assessment

Conditions for exam contract

This course unit cannot be taken via an exam contract

Teaching methods

Group work, Seminar, Lecture, Independent work

Study material

Type: Syllabus

Name: Selected chapters of Electric Machine Design Indicative price: Free or paid by faculty Optional: no Language : English Available on Ufora : Yes

Type: Handouts

Name: Exercises Indicative price: Free or paid by faculty Optional: no Language : English Available on Ufora : Yes

Type: Software

Name: Design software for electrical machines Indicative price: Free or paid by faculty Optional: no Online Available : Yes

References

- Michael Liwschitz-Garik and Clyde C. Whipple, Alternating-Current Machines, D. Van Nostrand Company, Inc.
- Hans Otto Seinsch, Oberfelderscheinungen in Drehfeldmaschinen, B.G. Teubner, Stuttgart, 1992
- S.J. Salon, Finite Element Analysis of Electrical Machines, Kluwer Academic Publishers, 1995
- Jiri Lammeraner and Milos Stafl, Eddy Currents, Iliffe Books Ltd., London

Course content-related study coaching

Assessment moments

end-of-term and continuous assessment

Examination methods in case of periodic assessment during the first examination period

Oral assessment, Written assessment

Examination methods in case of periodic assessment during the second examination period

Oral assessment, Written assessment

Examination methods in case of permanent assessment

Assignment

Possibilities of retake in case of permanent assessment

examination during the second examination period is possible in modified form

Extra information on the examination methods

During examination period: theory: oral exam with written preparation; exercises: written exam. During semester: graded reports.

Calculation of the examination mark

Evaluation during examination period: theory: 50%, exercises: 20% Evaluation during semester: 30% (project report) Participation to both evaluation during examination period and evaluation during semester (i.e. when report on independent and/or group work has been submitted) is required.