

Course size

Course **Specifications**

Valid as from the academic year 2024-2025

Resource Recovery and Recycling Technologies (1002767)

Credits 5.0	Study time 1	Study time 150 h			
Course offerings in academ	nic year 2024-2025				
A (Year)	English	Gent			
Lecturers in academic year	2024-2025				
Frisch, Gero			FREIBE01	staff membe	er
Hennebel, Tom			LA25	lecturer-in-charge	
De Gusseme, Bart			LA25	co-lecturer	
Du Laing, Gijs			LA24	co-lecturer	
Offered in the following programmes in 2024-2025				crdts	offering
International Master of Science in Sustainable and Innovative Natural Resource				5	А
Management					
Exchange Programme in Bioscience Engineering: Environmental Technology (master's level)				5	А

(nominal values; actual values may depend on programme)

Teaching languages

English

Keywords

resource, recovery, recycling technology, waste

Position of the course

This course is structured around the "metallurgical toolbox". This toolbox contains a range of novel and more established technologies that may be integrated into process chains to be set up for recovery of (mineral) resources from solid and liquid wastes and secondary resources.

Contents

The toolbox is constructed based on four typical, subsequent steps in metallurgical flowsheets. In each of the steps, different metallurgical tools will be discussed: 1. Pretreatment 2. Metal extraction: hydrometallurgy, bioleaching, solvo-metallurgy and pyrometallurgy 3. Metal recovery: electrowinning, biosorption/bioprecipitation, physicichemical separations 4. Residue valorization

For each tool, the relevant thermodynamic modelling will be discussed.

Initial competences

The requested initial competences for entering the SINREM MSc programme

Final competences

- 1 capable to comprehend the engineering principles of the (unit) processes covered in the course
- 2 can evaluate a technical description of a waste treatment system/installation
- 3 able to specify the requirements which a waste treatment installation needs to fulfil
- 4 has insights in the potential use of the different processes when designing technologies for recovery of resources from waste
- 5 By going through the (online) learning materials offered within the different

elements of the toolbox, students will be able to gain basic/general knowledge on the mechanisms behind the different technologies, their working principles, their potential applications, boundary conditions for their use, their (dis) advantages, economic aspects, environmental impact, etc. The learning materials should allow students that have at least a bachelor degree in a broad range of scientific disciplines (e.g., chemists, bioscience engineers, civil engineers, geologists,...) to become familiar with the technologies involved.

Conditions for credit contract

Access to this course unit via a credit contract is determined after successful competences assessment

Conditions for exam contract

This course unit cannot be taken via an exam contract

Teaching methods

Group work, Lecture, Independent work, Peer teaching

Study material

None

References

Course content-related study coaching

Assessment moments

end-of-term and continuous assessment

Examination methods in case of periodic assessment during the first examination period

Written assessment

Examination methods in case of periodic assessment during the second examination period

Written assessment

Examination methods in case of permanent assessment

Oral assessment, Assignment

Possibilities of retake in case of permanent assessment

examination during the second examination period is not possible

Calculation of the examination mark

Students who eschew period aligned and/or non-period aligned evaluations for this course unit may be failed by the examiner.