

Course Specifications

Valid in the academic year 2024-2025

Biotechnology in Metal Extraction and Recycling (1002924)

Course size	Irse size (nominal values; actual values may depend on programme)					
Credits 4.0	Study time 1	Study time 120 h				
Course offerings in ac	cademic year 2024-2025					
A (Year)	English	Gent				
Lecturers in academic	c year 2024-2025					
Hedrich, Sabrina FREIBEO			FREIBE01	lecturer-in-charge		
Offered in the following programmes in 2024-2025				crdts	offering	
International Master of Science in Sustainable and Innovative Natural Resource				4	А	

Teaching languages

Management

English

Keywords

Position of the course

Contents

- 1. Microbial basics, cell structure, metabolism
- 2. Energy acquisition, redox reactions, microbial element cycling
- 3. Microbial habitats and biofilms, extremophiles
- 4. Biomining microorganisms, iron- and sulfur metabolizing acidophiles
- 5. Basics of bioleaching and biooxidation, mechanisms
- 6. Biomining technologies, stirred tank, heap and dump bioleaching, BIOX process
- 7. Bioleaching of primary and secondary resources, ores, technologies
- 8. Metal extraction from secondary resources, mine tailings, urban waste, advances
- in application and technologies
- 9. Stirred tank bioreactor operation, heap bioleaching, set up and control
- 10. Biological metal recovery from waste water, iron oxidizing and sulfate reducing microorganism, application examples
- 11. Biosorption, bioaccumulation, biosynthesis of nanomaterials
- 12. Analytical methods in biohydrometallurgy

Initial competences

Bachelor degree in natural science, mining- or metallurgy-related engineering. Basic knowledge in chemistry.

Final competences

- 1 After successfully completing the module, the students are able to:
 - describe basics in microbiology and the general concept of microbial lifestyle and metabolism
- 2 balance the advantages and limitations of various biohydrometallurgical process options
- 3 identify the role of different types of microorganisms in the process and how they catalyze metal recovery and interact with each other and their environment
- 4 apply the taught methods and basics to analyze given case studies and present and discuss the results in a seminar

Conditions for credit contract

This course unit cannot be taken via a credit contract

Conditions for exam contract

This course unit cannot be taken via an exam contract

Teaching methods

Seminar, Lecture, Independent work

Study material

None

References

Michael T Madigan; Kelly S Bender; Daniel H Buckley; W Matthew Sattley; David Allan Stahl, Brock biology of microorganisms, Pearson, 2018.
D. R. Lovley (Ed.): Environmental Microbe-Metal Interactions, ASM Press, 2014.
D.B. Johnson, C.G. Bryan, M. Schlömann, F.F. Roberto (Eds.) - Biomining Technologies. Springer. 2022.
E. R. Donati & W. Sand (Eds.) Microbial Processing of Metal Sulfides, Springer, 2007.
L. G. Santos Sobral, D. Monteiro de Oliveira & C. E. Gomes de Souza (Eds.): Biohydrometallurgical Processes: a Practical Approach, CETEM/MCTI, 2011.

Course content-related study coaching

Assessment moments

end-of-term and continuous assessment

Examination methods in case of periodic assessment during the first examination period

Presentation, Written assessment

Examination methods in case of periodic assessment during the second examination period

Presentation, Written assessment

Examination methods in case of permanent assessment

Participation, Presentation

Possibilities of retake in case of permanent assessment

examination during the second examination period is possible in modified form

Calculation of the examination mark