
Informatics (O000096)

Course
Specifications

Valid in the academic year 2024-2025

Course size

Course offerings and teaching methods in academic year 2024-2025

A (Year) English seminar

lecture

Incheon

Lecturers in academic year 2024-2025

De Neve, Wesley KR01 lecturer-in-charge

Offered in the following programmes in 2024-2025

Bachelor of Science in Environmental Technology 10 A
Bachelor of Science in Food Technology 10 A
Bachelor of Science in Molecular Biotechnology 10 A
Joint Section Bachelor of Science in Environmental Technology, Food Technology and
Molecular Biotechnology

10 A

crdts offering

Credits 10.0

(nominal values; actual values may depend on programme)

Study time 300 h

Teaching languages

English

Keywords

Command line, Computational thinking, Creative problem solving, Programming,
Python, SQL, UNIX

Position of the course

Scientists and engineers are regularly confronted with time-consuming and
repetitive tasks when having to process and analyse data, namely collecting
information from websites, converting files from one format to another, and
analysing, summarizing, and visualizing the information obtained. Moreover, given
that data are often arriving at an exponential rate, present-day scientists and
engineers are required to be able to automate the aforementioned tasks, in order
to speed up their daily job routines.

This course teaches students how to describe time-consuming and repetitive tasks
in such a way that they can be performed automatically by a (network-based)
computer system. To that end, students will acquire the necessary skills for
computer-based creative problem solving through learning to think and work in (1)
Python, a popular programming language, and (2) UNIX, the workhorse operating
system of science and engineering. The computer problems that need to be solved
are taken from different scientific disciplines, including mathematics, biology,
chemistry, physics, and computer science.

To take part in this course, students do not need to have any prior programming
experience. However, to be successful for this course, students need to have an
aptitude for mathematics and logic. In addition, given that this course follows a
‘learning by doing’ and a ‘learning from mistakes’ approach, students need to have
a willingness to solve computer problems on a regular basis.

Contents

Programming is the process of designing, writing, testing, debugging, and
maintaining the source code of computer programs. This requires knowledge of the
syntax and the semantics of a programming language, as well as the ability to
write programs in that language. Additionally, and maybe most importantly, when

1(Approved)

https://studiekiezer.ugent.be/2024/bachelor-of-science-in-environmental-technology-en
https://studiekiezer.ugent.be/2024/bachelor-of-science-in-environmental-technology-en
https://studiekiezer.ugent.be/2024/bachelor-of-science-in-environmental-technology-en
https://studiekiezer.ugent.be/2024/bachelor-of-science-in-food-technology-en
https://studiekiezer.ugent.be/2024/bachelor-of-science-in-food-technology-en
https://studiekiezer.ugent.be/2024/bachelor-of-science-in-food-technology-en
https://studiekiezer.ugent.be/2024/bachelor-of-science-in-molecular-biotechnology-en
https://studiekiezer.ugent.be/2024/bachelor-of-science-in-molecular-biotechnology-en
https://studiekiezer.ugent.be/2024/bachelor-of-science-in-molecular-biotechnology-en
https://studiekiezer.ugent.be/2024/joint-section-bachelor-of-science-in-environmental-technology-food-technology-and-molecular-biotechnology-en
https://studiekiezer.ugent.be/2024/joint-section-bachelor-of-science-in-environmental-technology-food-technology-and-molecular-biotechnology-en
https://studiekiezer.ugent.be/2024/joint-section-bachelor-of-science-in-environmental-technology-food-technology-and-molecular-biotechnology-en
https://studiekiezer.ugent.be/2024/joint-section-bachelor-of-science-in-environmental-technology-food-technology-and-molecular-biotechnology-en

writing computer programs, one must learn how to think like a programmer. This
process of computational thinking (that is, learning how to solve problems by
programming) is a common theme throughout the whole course.

In this course, students learn how to make use of the Python programming
language to solve a plethora of problems. To that end, attention is paid to:

• basic components: instructions, variables, data types, and operators;
• control structures: conditional statements, repetitive statements, and functions;
• data structures: strings, lists, tuples, dictionaries, sets, modules, and files;
• text files: reading, processing, and writing data; and
• object-oriented programming: objects, classes, attributes, methods,
• encapsulation, polymorphism, and inheritance.

Furthermore, in this course, students learn how to make use of UNIX-based tools to
automate repetitive or complex tasks. To that end, attention is paid to:

• the principles of UNIX-based operating systems;
• consulting technical documentation;
• running a remote interactive session (VPN, SSH);
• file systems;
• interactive command line usage;
• text file formats (HTML, XML, CSV, FASTA);
• filters, redirection, and pipes;
• regular expressions (regex);
• interactive text editing (e.g., through vim);
• automated text editing using edit commands; and
• the basics of shell scripting.

Finally, in this course, students learn how to make use of the Structured Query
Language (SQL) to communicate with a relational database.

Initial competences

An aptitude for mathematics and logic.

An interest in solving (scientific) problems.

Some basic computer knowledge is advantageous (prior programming skills are not
required).

Final competences

1 Translate a task described in natural language into a program written in Python.
2 Execute a program written in Python by means of a computer, generating a
1 correct result.
3 Test and debug a program written in Python.
4 Make the right choices between different alternatives when writing a program in
1 Python, taking into account performance (efficiency), coding style, and
1 correctness.
5 Demonstrate a working knowledge about the basic principles of object-oriented
1 programming.
6 Automate repetitive and complex tasks by means of UNIX-based tools.
7 Work interactively and non-interactively with operating systems, computer
1 networks, file systems, and text editors.
8 Understand the structure of various text file formats, including HTML, XML, CSV,
1 and FASTA.
9 Apply SQL to communicate with a relational database.
10 Independently resolve error messages through critical usage of technical
1 documentation and online resources.

Conditions for credit contract

Access to this course unit via a credit contract is determined after successful competences assessment

Conditions for exam contract

This course unit cannot be taken via an exam contract

2(Approved)

Teaching methods

Seminar, Lecture

Study material

Type: Handbook

Name: A Practical Guide to Linux: Commands, Editors, and Shell Programming
Indicative price: € 40
Optional: yes
Language : English
Author : Mark G. Sobell
ISBN : 978-0-13477-460-2
Oldest Usable Edition : Fourth Edition

Type: Handbook

Name: The Practice of Computing using Python
Indicative price: € 90
Optional: yes
Language : English
Author : William F. Punch and Richard Enbody
ISBN : 978-0-13437-976-0
Oldest Usable Edition : Third Edition

Type: Slides

Name: Informatics
Indicative price: Free or paid by faculty
Optional: no
Language : English
Number of Slides : 1356
Available on Ufora : Yes
Available through Student Association : No

Type: Software

Name: Dodona, Online Python Tutor, PyCharm, Linux shell
Indicative price: Free or paid by faculty
Optional: no
Online Available : Yes

References

Mark Lutz (2009). Learning Python: Powerful Object-Oriented Programming. Fourth
Edition. O'Reilly Media, ISBN-13: 978-0596158064.

Mark Pilgrim (2009). Dive into Python. CreateSpace, ISBN-13: 978-1441413024.
Free download @ http://diveintopython.org.

Hans Peter Langtangen (2009). A Primer on Scientific Programming with Python.
Springer, ISBN-13: 978-3642024740.

Tony Gaddis (2009). Starting Out with Python. Pearson Education - Addison Wesley,
ISBN-13: 978-0321549419.

Michael H. Goldwasser (2007). Object-Oriented Programming in Python. Prentice
Hall, ISBN-13: 978-0136150312.

Jason Kinser (2008). Python for Bioinformatics. Jones & Bartlett Publishers, ISBN-13:
978-0763751869.

Sebastian Bassi (2009). Python for Bioinformatics. Chapman & Hall, ISBN-13: 978-
1584889298.

Mark G. Sobell (2012). A Practical Guide to Linux: Commands, Editors, and Shell
Programming. Fourth Edition. Prentice Hall, ISBN-13: 978-0134774602.

William F. Punch, Richard Enbody (2017). The Practice of Computing using Python.
Third Edition. Addison Wesley, ISBN-13: ISBN-13: 978-0133085044.

3(Approved)

Steven Haddock and Casey Dunn (2010). Practical Computing for Biologists. First
Edition. Sinauer Associates, Inc, ISBN-13: 978-0878933914.

Ashley Shade, Tracy K. Teal (2015). Computing Workflows for Biologists: A
Roadmap. PLOS Biology.

Pavel A. Pevzner (2004). Educating Biologists in the 21st Century: Bioinformatics
Scientists versus Bioinformatics Technicians. Bioinformatics, Vol. 20, No. 14, pages
2159–2161.

Alejandra J. Magana, Manaz Taleyarkhan, Daniela Rivera Alvarado, Michael Kane,
John Springer, and Kari Clase (2014). A Survey of Scholarly Literature Describing
the Field of Bioinformatics Education and Bioinformatics Educational Research.
CBE—Life Sciences Education, Vol. 13, pages 607–623.

Course content-related study coaching

The syntax and the semantics of the programming language Python, the database
management language SQL, and selected UNIX tools are presented in the course
slides and in the course handbooks, and need to be acquired largely through
(guided) self-study.

Solutions for selected computer exercises are discussed during the theory lectures
so that students learn how computational skills can be applied in practice.

During the weekly supervised hands-on sessions, students themselves learn how to
tackle computational challenges by working on a series of mandatory computer
exercises that need to be solved independently. These computer exercises aim at
bringing the theory into practice.

Dodona, a digital learning environment, gives students instant feedback on their
solutions submitted for the Python programming challenges, containing additional
exercises for further practicing.

After each deadline, example solutions for all exercises are made available on
Ufora.

Information about the calculation of the different evaluation marks is
communicated during the theory lectures at the beginning and near the end of
the first-term and the second-term teaching activities.

Example examinations of previous years are made available on Ufora near the end
of the first-term and the second-term teaching activities.

Announcements on Ufora are used for counselling, giving feedback, and providing
background information.

Through individual appointments scheduled via email, the lecturer and the
teaching assistants are available for answering questions about the course in
general (grading, examination), the theory, and the exercises.

Assessment moments

end-of-term and continuous assessment

Examination methods in case of periodic assessment during the first examination period

Skills test

Examination methods in case of periodic assessment during the second examination period

Skills test

Examination methods in case of permanent assessment

Skills test

Possibilities of retake in case of permanent assessment

examination during the second examination period is not possible

4(Approved)

Calculation of the examination mark

For the first-term examination period, the mark of the periodic evaluation (end-
of-term assessment) accounts for 80% of the partial examination mark for Term 1
and the mark of the non-periodic evaluation (hands-on sessions; continuous
assessment) accounts for 20% of the partial examination mark for Term 1. To
qualify for passing, both the mark of the periodic and the non-periodic evaluation
should be at least equal to 8/20 (40%). If that is not the case, then the partial
examination mark for Term 1, as obtained during the first-term examination period,
is the least of the two obtained marks. No second partial examination opportunity
is administered during the first-term resit examination period.

If the partial examination mark for Term 1, as obtained during the first-term
examination period, is higher than or equal to 10/20, then one partial examination
is used during the second-term examination period, only covering the course
content of Term 2, with this partial examination consisting of both a periodic and
non-periodic evaluation.

If the partial examination mark for Term 1, as obtained during the first-term
examination period, is lower than 10/20, then two partial examinations are used
during the second-term examination period: a first partial examination covering the
content of Term 1, only consisting of a periodic evaluation, and a second partial
examination covering the content of Term 2, consisting of both a periodic and non-
periodic evaluation.

Students who obtained a partial examination mark for Term 1 higher than or equal
to 10/20 during the first-term examination period, may decide to retake the partial
examination covering the content of Term 1 during the second-term examination
period, with this partial examination only consisting of a periodic evaluation. When
doing so, the mark obtained for the latter periodic evaluation is used for calculating
the partial examination mark for Term 1 (that is, the mark obtained for the periodic
evaluation that took place during the first-term examination period is discarded).

For the second-term examination period, the mark of the periodic evaluation
accounts for 80% of the partial examination mark for Term 2 and the mark of the
non-periodic evaluation accounts for 20% of the partial examination mark for Term
2. To qualify for passing, both the mark of the periodic and the non-periodic
evaluation should be at least equal to 8/20 (40%). If that is not the case, then the
partial examination mark for Term 2, as obtained during the second-term
examination period, is the least of the two obtained marks.

During Term 2, the non-periodic evaluation for Term 1 cannot be retaken.
Therefore, the partial examination mark for Term 1 during the second-term
examination period is calculated twice. For the first calculation, the mark of the
non-periodic evaluation, as obtained during Term 1, accounts for 20% of the partial
examination mark and the mark of the periodic evaluation, as obtained for the
Term 1 content during the second-term examination period, accounts for the
remaining 80% of the partial examination mark. For the second calculation, the
partial examination mark is equal to the mark of the periodic evaluation, as
obtained for the Term 1 content during the second-term examination period (that
is, the mark of the non-periodic evaluation, as obtained during Term 1, is not taken
into account). The partial examination mark for Term 1 during the second-term
examination period is then equal to the maximum of the above two calculations.
Note that the mark of the periodic evaluation, as obtained for the Term 1 content
during the second-term examination period, should be at least equal to 8/20 (40%).
If that is not the case, then the partial examination mark for Term 1, as obtained
during the second-term examination period, is the least of the two obtained marks.

The final examination mark is the average of the partial examination mark for Term
1 and the partial examination mark for Term 2. To qualify for passing (that is, to
have a final examination mark that is higher than or equal to 10/20), both partial
examination marks should be higher than or equal to 8/20 (40%). If that is not the
case, then the final examination mark, as obtained during the second-term
examination period, is the least of the two obtained marks.

5(Approved)

During the second-term resit examination period, a third partial examination
opportunity is organized that covers the Term 1 content, as well as a second partial
examination opportunity that covers the Term 2 content, with both partial
examination opportunities only consisting of a periodic evaluation. Given that the
non-periodic evaluation for Term 1 and the non-periodic evaluation for Term 2
cannot be retaken during the second-term resit examination period, both the
partial examination mark for Term 1 and the partial examination mark for Term 2
are calculated twice, following the approach and the conditions used for calculating
the partial examination mark for Term 1 during the second-term examination
period. Furthermore, following the conditions in place for the second-term
examination period, the final examination mark is again the average of the partial
examination mark for Term 1 and the partial examination mark for Term 2, with
both partial examination marks again having to be higher than or equal to 8/20
(40%) in order to qualify for passing.

Marks for partial examinations can never be transferred to the second-term resit
examination period.

Students who eschew period aligned and/or non-period aligned evaluations for this
course unit may be failed by the examiner.

6(Approved)

