

Course Specifications

Valid as from the academic year 2025-2026

Electromagnetic-aware High Frequency Design (E033021)

Course	e size	(nominal values; actual valu	ues may depend on prograi	nme)			
(Credits 6.0 Study time 180 h						
Course offerings and teaching methods in academic year 2025-2026							
	A (semester 1)	English	nglish Gent		practical		
	lectu				ture		
	semi			ninar			
	B (semester 1)	Dutch	Gent				
Lecturers in academic year 2025-2026							
	Rogier, Hendrik			TW05	lecturer-in-ch	arge	
	Vande Ginste, Dries			TW05	co-lecturer		
Offered in the following programmes in 2025-2026					crdts	offering	
	Bridging Programme Master of Science in Electrical Engineering(main subject				6	А	
	Communication and Information Technology)						
	Bridging Programme Master of Science in Electrical Engineering(main subject Electronic Circuits and Systems)					A	
	Master of Science in Electrical Engineering (main subject Communication and Information					А	
	Technology)						
		Electromechanical Engineer	ing(main subject Control E	ngineering an	d 6	А	
	Automation) Master of Science in	Electromechanical Engineer	ing(main subject Flectrical	Power	6	А	
	Engineering)				Ū		
	Master of Science in	Electrical Engineering (main	subject Electronic Circuits	and Systems) 6	А	
	Master of Science in	Electromechanical Engineer	ing(main subject Maritime	Engineering)	6	А	
		Electromechanical Engineer	ing(main subject Mechanic	al	6	А	
	Construction)	Electromechanical Engineer	ing(main cubiect Mechanic	al Enorgy	6	А	
	Engineering)			at Elleryy	U	А	
		Electrical Engineering			6	В	
	Master of Science in	Photonics Engineering			6	А	

Teaching languages

English, Dutch

Keywords

multi-port, microwave circuits, circuit models, EMC, signal and power integrity, interference, norms

Position of the course

- Insight in circuit and EMC concepts
- Application of the concepts to interconnections and IC-packages
- Familiarise students with EMC norms

Contents

- Black box models for multi-port circuits: Concept of port and port impedance and S-parameters, Passivity and lossless properties of multi-port circuits, Multi-port applications and measurements
- Extraction of circuit models of multi-port circuits: Circuit models for multi-port circuits, Parameter extraction for transfer function models, Parameter extraction for physical models

- Analysis and design of passive microwave components: circulator, isolator, directional coupler, filters, matching networks
- Circuit properties of interconnections and IC-packages: Models for reflection, transmission and attenuation, Crosstalk and differential versus even mode, Measurements on interconnections and IC-packages
- Non-linear termination of interconnections: Circuit models for non-linear terminations, Circuit simulation techniques
- Concepts for EMC in circuits: Emission, immission and interference, Routes for an EMC problem
- Intra-system interference: Concepts of ground, earth, and reference, Static and dynamic noise margin, Modelling of the power supply circuit, Switching noise
- Inter-system interference: Radiative sources, Shielding (cables, connectors, heading). She discussed align in the foregoing fille interference.
- houding), Conductive sources, Filtering for conductive interference
- EMC norms and certification: Emission and immission norms

Initial competences

Having succesfully completed the courses on "Applied Electromagnetics" or "Electromagnetism II" or having acquired the final competences provided by these courses in any other way.

Final competences

- 1 Analyse and design microwave circuits based on impedance, admittance and scattering matrices.
- 2 Synthesize filters and matching networks.
- 3 Have insight in the role of electromagnetic phenomena on EM aware design, including radiated/conducted emission/immunity.
- 4 Be familiar with EMC norms.

Conditions for credit contract

Access to this course unit via a credit contract is determined after successful competences assessment

Conditions for exam contract

This course unit cannot be taken via an exam contract

Teaching methods

Seminar, Lecture, Practical, Independent work

Extra information on the teaching methods

Classroom lectures; Seminars: Guided exercise sessions; Scored exercises as homework; Classroom problem solving sessions; Lab sessions In particular the part EMC/SI/PI consists of lectures about theory and exercises, without making a strict, traditional distinction between them. All lectures are seminars which require interaction with and input from the students. A mandatory lab session takes place.

Study material

Type: Syllabus

Name: Electromagnetic-aware High-Frequency Design - Part I: Design of Passive Microwave Circuits Indicative price: € 10 Optional: no Language : English Number of Pages : 141 Oldest Usable Edition : 2024-2025 Available on Ufora : Yes Online Available : No Available in the Library : Yes Available through Student Association : Yes Additional information: Official Course Material: Part I

Type: Syllabus

Name: Electromagnetic-aware High-Frequency Design Part 2: Electromagnetic Compatibility, Signal and Power Integrity (EMC/SI/PI) Indicative price: Free or paid by faculty Optional: no Language : English Number of Pages : 97 Oldest Usable Edition : 2023-2024 Available on Ufora : Yes Online Available : No Available in the Library : No Available through Student Association : Yes Additional information: Official Course Material Part 2

Type: Handouts

Name: Electromagnetic-aware High-Frequency Design Part I: Design of Passive Microwave Circuits Indicative price: Free or paid by faculty Optional: no Language : English Number of Pages : 60 Oldest Usable Edition : 2024-2025 Available on Ufora : Yes Online Available : No Available in the Library : No Available through Student Association : No Usability and Lifetime within the Course Unit : intensive Usability and Lifetime within the Study Programme : regularly Usability and Lifetime after the Study Programme : occasionally Additional information: Slides Lectures Part I

Type: Audiovisual Material

Name: Lecture Videos COVID - Part I Indicative price: Free or paid by faculty Optional: yes Language : English Available on Ufora : Yes Online Available : No Available in the Library : No Available through Student Association : No Usability and Lifetime within the Course Unit : not applicable Usability and Lifetime within the Study Programme : regularly Usability and Lifetime after the Study Programme : occasionally Additional information: Lecture videos COVID as background and backup material.

References

David M. Pozar, Microwave Engineering, third edition, John Wiley & Sons, 2004 Jasper Goedbloed, Electromagnetic Compatibility, Prentice Hall 1992, ISBN 0-13-249293-8, 381 pp Prentice Hall, 2nd edition: 2010 Introduction to Electromagnetic Compatibility C. R. Paul ISBN: 978-0-471-75500-5 John Wiley & Sons, Inc., 2nd edition: 2006 Signal and Power Integrity -- Simplified E. Bogatin ISBN: 978-0-13-234979-6 Course content-related study coaching

Assessment moments

end-of-term and continuous assessment

Examination methods in case of periodic assessment during the first examination period

Written assessment open-book, Written assessment

Examination methods in case of periodic assessment during the second examination period

Written assessment open-book, Written assessment

Examination methods in case of permanent assessment

Skills test, Assignment

Possibilities of retake in case of permanent assessment

examination during the second examination period is possible in modified form

Extra information on the examination methods

During examination period: Part EMC/SI/PI: Written closed-book assessment - Theory + theoretical excercises Part Design of Passive Microwave Circuits: A) Written closed-book assessment - Theory

B) Written open-book assessment - Exercises

During semester. Graded lab sessions, Graded exercises as homework. *Second chance*. Possible in adapted form

Calculation of the examination mark

Evaluation throughout semester as well as during examination period. Special conditions: 1/2 Exam Design of Passive Microwave Circuits (1/6 theory exam + 1/6 exercise exam + 1/6 scored exercises as homework) + 3/8 Exam EMC/SI/PI + 1/8 Lab report.

Students who eschew one or more parts of the assessment (part Design of Passive Microwave Circuits, part EMC/SI/PI, part continuous assessment) cannot obtain a pass mark for the course unit. Should the final mark be higher than 7/20, it will be reduced to the highest non-passable mark (i.e. 7/20). When the student obtains less than 8/20 for at least one of the components (part Design of Passive Microwave Circuits, part EMC/SI/PI, part continuous assessment), they can no longer pass the course unit as a whole. If the total score does turn out to be a mark of ten or more out of twenty, this is reduced to the highest fail mark (9/20).