

Course Specifications

Valid as from the academic year 2024-2025

Photovoltaic Energy Conversion (E900132)

Course size	(nominal values; actual valu	ies may depend on programme)	
Credits 4.0	Study time 12			
Course offerings and te	aching methods in academic	year 2025-2026		
A (semester 2)	English	Gent	lecture	
			seminar	
Lecturers in academic y	ear 2025-2026			
Offered in the following	crdts	offering		
Bridging Program	4	А		
Master of Science in Photonics Engineering			4	А
Teaching languages				
English				
Keywords				
photovoltaics, sola	r energy, sustainable energy			
Position of the course				
To get familiar to s the photovoltaic ef		to electrical work, by means of		
	es of sustainable energy. sustainable energies within a b	roader thermodynamic context	- 	
Contents				
 Availability of sol 				
 Thermal conversion 				
	tovoltaic conversion			
Realistic efficient	•			
	olar cells (mono and polycryst	aunej		
 Amorphous solar GaAs solar cells 	LEIIS			
 Heterojunction so 	nlar cells			
- Ecology and econ				

Ecology and economy

Initial competences

basics of thermodynamics, quantumphyics, solid-state physics, semi-conductor physics, diode theory

Final competences

- 1 INSIGHTS: Understanding the basic principles of photovoltaic energy conversion. Understanding the limitations of realistic solar panels.
- 2 INSIGHTS: The ecological benefits of sustainable energy. Understanding the efficiency and limitations of photovoltaic and thermal energy conversion.
- 3 PROFICIENCIES: Calculations of the available solar energy.
- 4 PROFICIENCIES: Calculations of the conversion and the conversion efficiency of solar energy.

Conditions for credit contract

Access to this course unit via a credit contract is determined after successful competences assessment

Conditions for exam contract

This course unit cannot be taken via an exam contract

Teaching methods

Seminar, Lecture

Study material

Type: Syllabus

Name: Photovoltaic energy conversion and sustainable energy Indicative price: Free or paid by faculty Optional: no Language : English Number of Pages : 216 Oldest Usable Edition : 2022 Available on Ufora : Yes Online Available : Yes Available in the Library : No Available through Student Association : No

References

Course content-related study coaching

Assessment moments

end-of-term and continuous assessment

Examination methods in case of periodic assessment during the first examination period

Oral assessment, Written assessment

Examination methods in case of periodic assessment during the second examination period

Oral assessment, Written assessment

Examination methods in case of permanent assessment

Possibilities of retake in case of permanent assessment

examination during the second examination period is possible

Extra information on the examination methods

During examination period: written closed-book exam; oral closed-book exam non-period-boundevaluation: computer practicum with report

Calculation of the examination mark

period-bound evaluation: written+oral examination: 80% non-period-bound evaluation: report computer practicum: 20%