

Course Specifications

From the academic year 2019-2020 up to and including the academic year

Microbiology for Resource Scientists: Lecture (1002530)

Due to Covid 19, the education and assessment methods may vary from the information displayed in the schedules and course details. Any changes will be communicated on Ufora.

Course size (nominal values; actual values may depend on programme)					
Credits 3.0	Study time 90	h Contact h	irs	30.0h	
Course offerings in ac	ademic year 2021-2022				
A (semester 1)	English	Gent			
Lecturers in academic	c year 2021-2022				
Schlöhmann, Michael FREIBEO1			FREIBE01	lecturer-in-charge	
Offered in the following programmes in 2021-2022				crdts	offering
International Master of Science in Sustainable and Innovative Natural Resource Management				3	А

Teaching languages

English

Keywords

Position of the course

Contents

Eukaryotic versus prokaryotic cell; important biomolecules (carbohydrates, lipids, proteins, nucleic acids); Basics of fundamental cell processes (replication, transcription, translation); structure of the microbial cell, microbial taxonomy and phylogeny; growth of microorganisms; principles of energy metabolism; microbial activities in the carbon cycle: energy metabolism on the example of aerobic degradation of carbohydrates; simple fermentations; aerobic degradation of alkanes; CO2 fixation in photosynthetic and lithotrophic microorganisms; activities in the nitrogen cyle (nitrification, denitrification, N2 fixation); microbial iron oxidation and reduction; microbial oxidation and reduction of sulfur compounds.

Initial competences

Background in general, inorganic and organic chemistry; high school knowledge in biology

Final competences

Students will have obtained a basic understanding of the functioning of a microbial cell. Specifically they will have obtained an understanding of the diversity of microbial energy metabolism, of the effects of microbial activities on the environment and how that can be used for the winning of metals and oil and for mine-water treatment. Students understand how microorganisms are classified into certain taxa, and they will have some insight into molecular tools for the classification and for the prediction of properties of the microorganisms.

Conditions for credit contract

This course unit cannot be taken via a credit contract

Conditions for exam contract

This course unit cannot be taken via an exam contract

Teaching methods

Extra information on the teaching methods

S1 (WS): All main topics are also covered in the German lecture "Grundlagen der

Biochemie und Mikrobiologie" which is available online and will be subtitled in English. (E-learning platform: OPAL) / Lectures (2 SWS)

Learning materials and price

References

Madigan, Martinko, Stahl, Clark: Brock - Microbiology Reineke & Schlömann: Umweltmikrobiologie

Course content-related study coaching

Assessment moments

Examination methods in case of periodic assessment during the first examination period

Examination methods in case of periodic assessment during the second examination period

Examination methods in case of permanent assessment

Possibilities of retake in case of permanent assessment

examination during the second examination period is possible

Calculation of the examination mark