

Course size

Course Specifications

Valid in the academic year 2021-2022

15.0h 15.0h 30.0h 15.0h 30.0h

Sustainable Chemical Production Processes (E071131)

Due to Covid 19, the education and assessment methods may vary from the information displayed in the schedules and course details. Any changes will be communicated on Ufora.

(nominal values; actual values may depend on programme)

Course Size	(I	iviiiiiai vaiues, actuat vatu	ies iliay uepellu oli progra	iiiiie)		
Credit	s 6.0	Study time 18	30 h Contac	t hrs	60.0h	
Course offe	rings and teachi	ng methods in academic	year 2021-2022			
A (sei	mester 1)	English	Gent	gr	oup work	
				ex	cursion	
				le	cture	
B (se	mester 1)	Dutch Gent		gr		
Ç	,			guided self-study		
				_	cursion	
				2,1	cuision	
Lecturers in	academic year	2021-2022				
Van Geem, Kevin TW11				TW11	lecturer-in-charge	
Reyni	ers, Pieter			TW11	co-lecturer	
Offered in the following programmes in 2021-2022					crdts	offering
Bridging Programme Master of Science in Chemical Engineering					6	В
Bridging Programme Master of Science in Chemical Engineering					6	Α
Master of Science in Electromechanical Engineering(main subject Control Engineering and 6 Automation)						Α
Master of Science in Electromechanical Engineering(main subject Electrical Power					6	Α
Engineering) Master of Science in Electromechanical Engineering(main subject Maritime Engineering) 6	Α
Master of Science in Electromechanical Engineering(main subject Mechanical					6	Α
	ruction)				_	
	er of Science in El eering)	ectromechanical Engineeri	ng(main subject Mechanic	al Energy	6	Α
Interi	national Master o	f Science in Sustainable an	d Innovative Natural Reso	urce	6	Α
	gement er of Science in Ch	nemical Engineering			6	В
		nemical Engineering			6	Α
		istainable Materials Engine	eering		6	Α
		_	-			

Teaching languages

English, Dutch

Keywords

Sustainability, petroleum refining, Petro chemical processes, biotechnology, oil, coal, natural gas, biomass, lifecycle analysis, cleantech, process economics, CO2 storage, CO2 utilisation

Position of the course

Introduction to the most important chemical and petrochemical processes for the production of fuels, base and bulk chemicals. Particular attention is paid to technical, economical and environmental aspects. Getting insight into the technical-scientific basis for these processes and in the structure of the chemical industry, petroleum refining industry, the petrochemical industry, biotechnology, biorefinery.

Contents

- Structure of the chemical industry
- Resources, process efficiency, waste, life cycle analysis, exergy
- Conversion of oil, biomass and coal. Production of fossil and renewable fuels. Overview of

(Approved) 1

the final products

- Sustainable production of Base Chemicals: hydrogen; carbon monoxide, ethene; propene; butenes; butadiene, Benzene; toluene; sustainablexylenes, acetic acid, sulfuric acid, ammonia, methanol, etc.
- Sustainable production of second generation chemicals: Styrene, Hetero-atom: vinylchloride, Ethylene Oxide, Adipic Acid, Caprolactam, Maleic Anhydride
- Important sustainable Processes: capita selecta: Steamreforming of natural gas; partial oxidation to synthesis gas or ethyne, Steam Cracking, Catalytic cracking; Catalytic reforming, High-Pressure Polyethylene, bioethanol
- Plant visits: unit operations, sustainability, economics, continuous versus batch processes

Initial competences

Physical & Organic Chemistry, Heat and Material Transport, Unit Operations in the Chemical Industry

Final competences

- 1 Understanding the following concepts: crude oil, distillate, residue, bulk chemicals, sustainability, life cycle analysis, biomass, process simulation, CO2 emissions
- 2 Obtain insight in the structure of chemical industry.
- 3 Obtain insight in the structure of a refinery.
- 4 Obtain insight in production methods of important chemicals.
- 5 Obtain insight in production of selected second generation chemicals.
- 6 Obtain insight in implementation of large-scale processes.
- 7 Evaluation of process efficiency and sustainability.
- 8 Identification of the most important streams in a refinery and treatment processes.
- 9 Process simulation.
- 10 Process economics.

Conditions for credit contract

Access to this course unit via a credit contract is determined after successful competences assessment

Conditions for exam contract

This course unit cannot be taken via an exam contract

Teaching methods

Group work, Guided self-study, Excursion, Lecture

Extra information on the teaching methods

- · Hoorcollege: 20u
- Groepswerk: 10u
- Practicum: 20u
- · Project: 10u

Learning materials and price

Syllabus in English (electronically available on the following web-site: https://ufora.ugent.be). Slides in English available on https://ufora.ugent.be

References

Chemical Process Technology, Jacob A. Moulijn, Michiel Makkee, Annelies van Diepen, ISBN: 978-0-471-63062-3, 2001 ULLMANN'S Encyclopedia of Industrial Chemistry: http://www.wileyvch.de/vch/software/ullmann

Course content-related study coaching

Begeleiding door assistent

Assessment moments

end-of-term and continuous assessment

Examination methods in case of periodic assessment during the first examination period

Oral examination

Examination methods in case of periodic assessment during the second examination period

Oral examination

Examination methods in case of permanent assessment

Report

Possibilities of retake in case of permanent assessment

examination during the second examination period is not possible

(Approved)

2

Extra information on the examination methods

During examination period: oral closed-book exam, written preparation During semester: graded project reports. Second chance: Not possible

Calculation of the examination mark

Evaluation throughout semester as well as during examination period. Special conditions: none; project reports: 6/20; exam: 14/20

(Approved) 3