Environmental Modelling (C003809)

Due to Covid 19, the education and evaluation methods may vary from the information displayed in the schedules and course details. Any changes will be communicated on Ufora.

Lecturers in academic year 2021-2022

Soetaert, Karline
WE11 lecturer-in-charge

Bonte, Dries
WE11 co-lecturer

Offered in the following programmes in 2021-2022

Master of Science in Marine and Lacustrine Science and Management

3 A

Course offerings and teaching methods in academic year 2021-2022

A (semester 2)
English
Gent

lecture 15.0 h

seminar: coached exercises 15.0 h

Course size

Credits 3.0
Study time 90 h
Contact hrs 30.0 h

Contact hrs

Study time 90 h
Credits 3.0

Course size

(nominal values; actual values may depend on programme)

Due to Covid 19, the education and evaluation methods may vary from the information displayed in the schedules and course details. Any changes will be communicated on Ufora.

Course size (nominal values; actual values may depend on programme)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Study time</th>
<th>Contact hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0</td>
<td>90 h</td>
<td>30.0 h</td>
</tr>
</tbody>
</table>

Course offerings and teaching methods in academic year 2021-2022

A (semester 2)
English
Gent

lecture 15.0 h

seminar: coached exercises 15.0 h

Lecturers in academic year 2021-2022

Soetaert, Karline
WE11 lecturer-in-charge

Bonte, Dries
WE11 co-lecturer

Offered in the following programmes in 2021-2022

Master of Science in Marine and Lacustrine Science and Management

3 A

Teaching languages

English

Keywords

Position of the course

Contents

Present day environmental problems (e.g. eutrophication, contaminant dispersal, climate change, ocean acidification) require a quantitative approach. To better understand how natural systems respond to such changing inputs and boundary conditions, biogeochemical models of varying complexity are being called upon. The central aim of this course is to learn how to develop and apply such models. In this course we will focus particularly on elemental cycling (Carbon, Nitrogen etc) and transport of contaminants within aquatic ecosystems (e.g. rivers, estuaries, lakes, oceans). Models are implemented in the open-source programming language R.

Models in the environmental sciences.

• What is a model?
• Types of models
• Model examples (e.g. North Sea, Scheidt estuary, ocean acidification)

Construction of models

• Balance equations, boundary conditions, transport formulation, kinetic rate laws
• Reactive transport models (box models, 1D, 2D and 3D)
• pH models, acid-base chemistry and CO2 uptake

Model solution

• steady-state solutions versus transient solutions
• analytical versus numerical solution
• numerical integration procedures

Model applications

• Causes of uncertainty in model predictions
• Sensitivity analysis
• Fitting models to data: parameter estimation, cost functions, estimators (least squares, maximum likelihood)
• Parameter uncertainty
• Model selection

(Approved)
Initial competences

Final competences

Conditions for credit contract
Access to this course unit via a credit contract is determined after successful competences assessment.

Conditions for exam contract
This course unit cannot be taken via an exam contract.

Teaching methods
Lecture, seminar: coached exercises

Learning materials and price

References

Course content-related study coaching

Evaluation methods
end-of-term evaluation

Examination methods in case of periodic evaluation during the first examination period
Oral examination

Examination methods in case of periodic evaluation during the second examination period
Oral examination

Examination methods in case of permanent evaluation

Possibilities of retake in case of permanent evaluation
not applicable

Calculation of the examination mark
oral exam: 100%