

Course Specifications

From the academic year 2020-2021 up to and including the academic year

Quantum Field Theory (CO01747)

Course size	(nominal values; actual values may depend on programme)				
Credits 6.0	Study time 180 h	(Contact hrs	52.5h	
Course offerings and te	eaching methods in academic year 20	022-2023			
A (semester 1)	Dutch	Gent		seminar: coached exercises	12.5h
				lecture	40.0h
				online lecture	0.0h
				online seminar: coached exercises	0.0h
Lecturers in academic y	/ear 2022-2023				

Mertens, Thomas WEO5	lecturer-in-c	harge
Offered in the following programmes in 2022-2023	crdts	offering
Master of Science in Teaching in Science and Technology(main subject Mathematics)	6	Α
Master of Science in Teaching in Science and Technology(main subject Physics and Astronomy)	6	А
Master of Science in Mathematics	6	А
Master of Science in Physics and Astronomy	6	А

Teaching languages

Dutch

Keywords

Quantum field theory, elementary particle physics

Position of the course

Theoretical: thorough study of modern relativistic quantum field theory based on the path integral formalism and applied to elementary particle physics and solid state physics.

Practical: calculation of probabilities of particle processes in the Weinberg-Salammodel and quantum chromodynamics. Modern introduction to relativistic quantum field theory and elementary particle physics based on the path integral formalism. The emphasis is on physical concepts and their relation with the mathematical model.

Contents

Elementary particles are the guanta of their underlying particle field. Therefore, quantum field theory is at the basis of elementary particle physics. The particle aspect of a quantum field can be elegantly extracted in the path integral formalism. A perturbative expansion of the path integral can be pictorially represented with Feynman diagrams of the particle processes. Elementary particles also have internal symmetries and Yang-Mills theories with local gauge invariance demand special precaution to define the path integral properly. This entails the introduction of the so-called Faddeev-Popov ghosts, particles without physical meaning but which have to be introduced for mathematical consistency (conservation of probability). A further technical question is the problem of renormalisation: quantum fluctuations at very small distances generate divergences. Amodern view of renormalisation is given through the renormalization group. Applications of Yang-Mills theories are the Weinberg-Salam model of electroweak interactions and quantum chromodynamics (Q.C.D.), the theory of quarks and gluons which describes strong interactions. As an application of the renormalisation group, the asymptotic freedom of guarks is considered in some

detail. Also, some aspects of the quark confinement problem are treated. The course ends with GUTS (Grand Unified Theories) and string theory.

Initial competences

End competences of Relativity Theory and Quantum Mechanics are sufficient.

Final competences

The student has a working knowledge of particle physics and field theory and is prepared for research in quantum field theory, elementary particle physics and theoretical physics in general (for ex: theoretical solid state physics).

Conditions for credit contract

Access to this course unit via a credit contract is determined after successful competences assessment

Conditions for exam contract

This course unit cannot be taken via an exam contract

Teaching methods

Online lecture, Lecture, Online seminar: coached exercises, Seminar: coached exercises

Extra information on the teaching methods

The excercises are guided and are based on Feynman diagrams.

Learning materials and price

Syllabus. Cost: 12 EUR

References

An introduction to quantum field theory. M. Peskin and D. Schroeder, Addison Wesley (1995)

Course content-related study coaching

Support orally or via email by teacher and collaborators.

Assessment moments

end-of-term assessment

Examination methods in case of periodic assessment during the first examination period

Oral examination

Examination methods in case of periodic assessment during the second examination period

Oral examination, Written examination with open questions

Examination methods in case of permanent assessment

Possibilities of retake in case of permanent assessment

not applicable

Extra information on the examination methods

Theory: orally and written. Exercises: written.The emphasis is on the understanding of physical concepts and their relation with the mathematical model.

Calculation of the examination mark

1/2(theory)+1/4(oral)+1/4(excercises)