
Scripting Languages (C002178)

Course
Specifications

Valid as from the academic year 2024-2025

Course size

Course offerings and teaching methods in academic year 2024-2025

A (semester 2) Dutch seminar

lecture

Gent

Lecturers in academic year 2024-2025

Dawyndt, Peter WE02 lecturer-in-charge

Offered in the following programmes in 2024-2025

Bachelor of Science in Computer Science 6 A

crdts offering

Credits 6.0

(nominal values; actual values may depend on programme)

Study time 180 h

Teaching languages

Dutch

Keywords

python, javascript, scripting languages, dynamic typing

Position of the course

Scripting languages support scripts: programs written for a special run-time environment that
automate the execution of tasks that could alternatively be executed one-by-one by a human
operator. Scripting languages are often interpreted rather than compiled. Primitives are usually
the elementary tasks or API calls, and the language allows them to be combined into more
complex programs. Environments that can be automated through scripting include software
applications, web pages within a web browser, the shells of operating systems (OS),
embedded systems, as well as numerous games. As a result, scripting languages can be
viewed as domain-specific languages for a particular environment and in the specific case of
scripting an application they are also known as extension languages.

The spectrum of scripting languages ranges from very small and highly domain-specific
languages to general-purpose programming languages used for scripting. Standard examples
of scripting languages for specific environments include: Bash (for the Unix or Unix-like
operating systems), ECMAScript/JavaScript (for web browsers) and Visual Basic for
Applications (for Microsoft Office applications). Python is a general-purpose language that is
also commonly used as an extension language, while ECMAScript/JavaScript is still primarily a
scripting language for web browsers, but is also used as a general-purpose language.

Contents

You explore the possibilities of scripting languages by learning Python and JavaScript
(ECMAScript). These two scripting languages use dynamic typing, in contrast for example to
the programming language Java that uses static typing. In addition, you also experience how
Python and JavaScript combine ideas from object-oriented programming with ideas from
functional programming and event-driven programming in one and the samen language. Apart
from learning the scripting languages themselves, you also learn how they can be applied to
automate tasks in specific environments.

Initial competences

Proven programming experience in at least one procedural or object-oriented programming
language (e.g. C, C++ or Java).

Final competences

1 Master the Python scripting language.
2 Apply the Python scripting language for automating tasks in a specific environment.

1(Approved)

https://studiekiezer.ugent.be/2024/bachelor-of-science-in-computer-science
https://studiekiezer.ugent.be/2024/bachelor-of-science-in-computer-science
https://studiekiezer.ugent.be/2024/bachelor-of-science-in-computer-science

3 Master the JavaScript (ECMAScript) scripting language.
4 Apply the JavaScript (ECMAScript) scripting language for automating tasks in a browser.
5 Implement a client-server application that uses server-side Python and client-side JavaScript
1 (browser).

Conditions for credit contract

Access to this course unit via a credit contract is determined after successful competences assessment

Conditions for exam contract

This course unit cannot be taken via an exam contract

Teaching methods

Seminar, Lecture, Independent work

Extra information on the teaching methods

Electronic learning environment Ufora is used to encourage individual contributions of the
students and to disseminate background material and pointers to alternative scripting
languages. Assignments are distributed via GitHub (github.ugent.be), can be worked out on the
interactive Linux environment Helios (helios.ugent.be) and must be submitted to Indianio
(indianio.ugent.be). Automated feedback on programming assignments is given immediately by
using the interactive learning environments Pythia (pythia.ugent.be; Python) and Dodona
(dodona.ugent.be; JavaScript).

Study material

Type: Slides

Name: Slides shown during the lectures.
Indicative price: Free or paid by faculty
Optional: no
Language : Dutch
Available on Ufora : Yes
Online Available : Yes
Available in the Library : No
Available through Student Association : No
Additional information: The course only makes use of tutorials that are freely available online, together with video
tutorials and tips & tricks for specific programming assignments. Miller B, Ranim D. How to Think Like a Computer
Scientist (freely available online). Crockford D. Crockford on JavaScript (lecture series freely available online). MDN
JavaScript guide (freely available online). Bootstrap tutorial (freely available online).

References

Crockford D (2008). JavaScript: The Good Parts. O'Reilly Media. ISBN 978-0-596-51774-8.

Flanagan D (2010). jQuery Pocket Reference. O'Reilly Media. ISBN 978-1-4493-9722-7.

Course content-related study coaching

Through a combination of classroom lectures and computer seminars, the student gains insight
in the usage of different scripting languages. He or she is stimulated to practice these
languages by means of a series of given automation problems. Solutions to exercises and
tasks are evaluated during computer seminars. Consultation with lecturer or one of his
assistants by email appointment gives the possibility of additional explication on an individual
basis. Interactive coaching (among students and between students and the lecturer) is
encouraged by making use of the electronic learning environment Ufora. Automated feedback
on programming assignments is given immediately by using the interactive learning
environments Pythia (pythia.ugent.be; Python) and Dodona (dodona.ugent.be; JavaScript).

Assessment moments

end-of-term and continuous assessment

Examination methods in case of periodic assessment during the first examination period

Skills test

Examination methods in case of periodic assessment during the second examination period

Skills test

Examination methods in case of permanent assessment

Skills test, Assignment

Possibilities of retake in case of permanent assessment

examination during the second examination period is not possible

2(Approved)

Extra information on the examination methods

In computing the final score we take into account both the permanent evaluations (35%, 7/20)
and the periodic evaluation (65%, 13/20). There are three permanent evaluation that together
make up the score for the permanent evaluations.

For the first permanent evaluation (Python), the students have to work on a series of 44
mandatory exercises. Based on the covered programming techniques, these exercises are
subdivided into 10 series of mandatory exercises. The first exercise of each series always is a
variation on the manipulation of ISBN numbers. A sample solution of this exercise is available
from Ufora, and in an accompanying instruction video we explain how we came to this sample
solution. As such, the ISBN exercises explain how the new programming technique from the
series can be brought into practive. After this preparatory steps, students are ready to apply the
new programming technique themselves in solving the other five programming exercises from
the series. Students must submit their solutions of the mandatory exercises in each series
(including the ISBN exercise) through the online learning environment Pythia before a set
deadline (deadlines always fall at 22:00 on the Friday that follows the hands-on session
dedicated to the series of exercises). Students can use the Pythia scoresheet to get an
overview of the exercises for which they have already submitted a correct solution. The
scoresheet provides a nice overview of the mandatory exercises in each series, the submission
deadlines, the current status of each exercises, and the time a first correct solution was
submitted for the exercise.

The first permanent evaluation (Python) ends with an evaluation session during the hands-on
sessions that follows the submission deadline of the last exercise series. During this
evaluations, students have to solve two new Python programming assignments within the time
frame of two hours. These exercises are in line with the mandatory exercises the students had
to solve during the hands-on sessions. The submitted solutions for the evaluation exercises are
manually evaluated by the lecturer or the teaching assistants and scored based on both
correctness and the overall quality of the solution. The level of difficulty of the evaluation
exercises corresponds to the the level of the assignments that need to be solved during the
periodic evaluation (exam). In addition, this evaluation session follows the same procedure that
is also used during the periodic evaluations, so that students can use this experience to adjust
their approach towards the exam.

For the second permanent evaluation (JavaScript), the students have to work on a series of
mandatory exercises. This allows students to bring their JavaScript knowledge and skills into
practice. Students must submit their solutions of the mandatory exercises through the online
learning environment Indianio before set deadlines (deadlines always fall at 22:00 on the Friday
that follows the hands-on session dedicated to the series of exercises). Students can use the
electronic learning environment Dodona to test the correctness of their submitted solutions and
get immediate and automated feedback on their submitted solutions.

The second permanent evaluation (JavaScript) ends with an evaluation session during the
hands-on sessions that follows the submission deadline of the last exercise series. During this
evaluations, students have to solve two new JavaScript programming assignments within the
time frame of two hours. These exercises are in line with the mandatory exercises the students
had to solve during the hands-on sessions. The submitted solutions for the evaluation
exercises are manually evaluated by the lecturer or the teaching assistants and scored based
on both correctness and the overall quality of the solution. The level of difficulty of the
evaluation exercises corresponds to the the level of the assignments that need to be solved
during the periodic evaluation (exam). In addition, this evaluation session follows the same
procedure that is also used during the periodic evaluations, so that students can use this
experience to adjust their approach towards the exam.

The third permanent evaluation is an assignment in which the students have to implement a
client-server application that uses server-side Python and client-side JavaScript (browser). The
solution of this assignment must be submitted before a set deadline, and is evaluated based on
correctness, choices made in designing and implementing the application, and user-
friendliness of the application.

The score for the permanent evaluations is determined using the formula s * c / a, where s is
the score a student has obtains based on his submitted solutions for the evaluation exercises
(expressed as a score out of 20), c is the number of mandatory exerices for which at least one

3(Approved)

correct solutions has been submitted before the weekly deadlines, and a is the total number of
mandatory exercises. A student that for example has obtained a score of 16/20 for his
evaluation exercises and that has submitted correct solutions for all 44 mandatory exercises
before the weekly deadlines, obtains a score of 16 * 44/44 = 16 out of 20 for the evaluation
series. If that student still had obtained a score of 16/20 for his evaluation exercises, but only
submitted 30/44 correct solutions for the mandatory exercises before the weekly deadlines, he
sees his score for the evaluation series reduced to 16 * 30/44 = 10.9 out of 20.

Students will receive an email with their score for the evaluation series as soon as possible
after each evaluation session. During the next hands-on session, students can collect their
submitted solutions that will have been annotated with feedback that indicates where they can
improve their code. They can use this feedback in solving other exercises.

It is not possible to retake the permanent evaluation during the second examination period. To
compute the score for the second examination period, we compute two scores. One score
takes into account the score for the permanent evaluations (with weight 35%, as was done
during the first examination period). The other score ignores the score obtains for the
permanent evaluations, and is only based on the score for the periodic evaluation. The final
score for the second examination period is the maximum of these two scores.

During the periodic evaluation (exam) students are given four hours to solve some two Python
programming assignments and two JavaScript programming assignments. These assignments
are in line with the mandatory exercises the students had to solve during the hands-on
sessions and the evaluation assignments. To determine the score for the periodic solution, the
submitted solutions are manually evaluated by the lecturer or the teaching assistants and
scored based on both correctness and the overall quality of the solution.

Calculation of the examination mark

In computing the final score we take into account both the permanent evaluations (35%, 7/20)
and the periodic evaluation (65%, 13/20). There are three permanent evaluation that together
make up the score for the permanent evaluations.

It is not possible to retake the permanent evaluation during the second examination period. To
compute the score for the second examination period, we compute two scores. One score
takes into account the score for the permanent evaluations (with weight 35%, as was done
during the first examination period). The other score ignores the score obtains for the
permanent evaluations, and is only based on the score for the periodic evaluation. The final
score for the second examination period is the maximum of these two scores.

4(Approved)

