

Course Specifications

Valid as from the academic year 2024-2025

Fundaments of Programming Languages (C003241)

Course size (nominal values; actual values may depend on programme)

Credits 6.0 Study time 165 h

Course offerings and teaching methods in academic year 2024-2025

A (semester 1) Dutch Gent lecture seminar

Lecturers in academic year 2024-2025

Scholliers, Christophe WEO2		lecturer-in-charge	
Offered in the following programmes in 2024-2025		crdts	offering
Master of Science in Teaching in Science and Technology(main subject Computer Science)		6	Α
Master of Science in Teaching in Science and Technology(main subject Mathematics)		6	Α
Master of Science in Computer Science		6	Α
Master of Science in Computer Science Engineering		6	Α
Master of Science in Mathematics		6	Α

Teaching languages

Dutch

Keywords

programming languages, type systems, operational semantics, lambda calculus

Position of the course

This course introduces the student to the formal study of programming language and the mathematical techniques used for that purpose.

Contents

The courses covers in a formal manner

- syntax
- · operational semantics
- type systems
- program analysis based on hoare logic
- the most important properties of syntax, semantics, type systems and related proof methods, including
 - · type preservation
 - progress
 - Curry-Howard isomorphism
 - logical relations
 - ...

The study is performed on the basis of the simply typed lambda-calculus and various extensions, such as

- primitive types
- tuples
- records
- sum types
- $\bullet \ polymorphism \\$
- ..

Not all topis are covered every year.

Initial competences

Experience with the practical use of a programming language, e.g. by means of the Programming/Programming 1 course.

(Approved) 1

Knowledge of first order logic and basic mathematical proof techniques such as induction.

Final competences

- 1 To formalize informal statements about programming languages.
- 2 To prove properites of programming languaes.
- 3 To use the most important concepts of type systems and hoare logic creatively in new applications.
- 4 To appreciate the formal treatment of programming languages.
- 5 Give proofs in the COQ proof assistant

Conditions for credit contract

Access to this course unit via a credit contract is determined after successful competences assessment

Conditions for exam contract

This course unit cannot be taken via an exam contract

Teaching methods

Seminar, Lecture

Extra information on the teaching methods

alternating lectures and excercise sessions

Study material

Type: Software

Name: Software'

Indicative price: Free or paid by faculty

Optional: no

Additional information: Software Foundations online course, Benjamin C. Pierce, free website, free

References

- Hennessy, M. (1990). The semantics of programming languages. Wiley. http://www.scss.tcd. ie/Matthew.Hennessy/slexternal/reading.php
- Winskel, G. (1993). The formal semantics of programming languages, MIT Press.
- Carl Gunter. Semantics of Programming Languages. MIT Press, 1992. (ISBN 0-262-07143-6)
- Robert Harper. Practical Foundations for Programming Languages. Working draft, 2006. (online, as PDF)
- Shriram Krishnamurthi. Programming Languages: Application and Interpretation. (online, as PDF)
- Mitchell, John C.. Foundations for Programming Languages.
- John C. Reynolds. Theories of Programming Languages. Cambridge University Press, 1998. (ISBN 0-521-59414-6)
- Kenneth Slonneger and Barry L. Kurtz. Formal Syntax and Semantics of Programming Languages. Addison-Wesley.
- Robert D. Tennent (1991). Semantics of Programming Languages. Prentice-Hall.
- H. Nielson and F. Nielson (1993) Semantics with Applications. A formal Introduction. Wiley

Course content-related study coaching

interactive support on the electronic teaching system Ufora (forums, e-mail), appointments for personal support

Assessment moments

end-of-term and continuous assessment

Examination methods in case of periodic assessment during the first examination period

Oral assessment

Examination methods in case of periodic assessment during the second examination period

Oral assessment

Examination methods in case of permanent assessment

Assignment

Possibilities of retake in case of permanent assessment

examination during the second examination period is possible

Calculation of the examination mark

(Approved) 2

project assignments: 20%

oral exam: 80%

When a student obtains a grade less than 10/20 for either the theory or the project, the total end grade will be maximally the highest failing grade 9/20.

(Approved) 3