Course Specifications Valid as from the academic year 2024-2025 ## Linear Algebra and Geometry I (C003554) Course size (nominal values; actual values may depend on programme) Credits 6.0 Study time 180 h ## Course offerings and teaching methods in academic year 2024-2025 A (semester 1) Dutch Gent lecture seminar Lecturers in academic year 2024-2025 | Van Antwerpen, Arne | WEO1 | lecturer-in-charge | | |--|------|--------------------|----------| | De Medts, Tom | WE01 | co-lecturer | | | Offered in the following programmes in 2024-2025 | | crdts | offering | | Bachelor of Arts in Moral Sciences | | 6 | Α | | Bachelor of Arts in Philosophy | | 6 | Α | | Bachelor of Science in Mathematics | | 6 | Α | #### Teaching languages Dutch #### Keywords Vector spaces, matrices, determinants, linear maps, affine spaces #### Position of the course The course consists of a broad foundation in the theory of vector spaces and linear algebra over arbitrary fields, which is then applied to the concrete situation of Euclidean spaces. The course is set up in such a way that it will stimulate the student to get skilled in abstract mathematical reasoning, without ignoring the applications to other areas, in particular to physics. ## Contents After a general introduction including the required basic notions, the course takes off with a thorough study of vector spaces over arbitrary fields, and the related linear maps and linear operators; afterwards, spaces of homomorphisms and dual spaces are introduced. In the next part, the theory of matrices and determinants is considered, as well as its connection with linear maps, and their importance for coordinate transformations. Then the linear operators are the subject of a deeper study, including the eigenvalue problem, diagonalization of matrices, and the Cayley-Hamilton theorem. The theory built up so far is then used in a treatment of Euclidean spaces in n dimensions. The emphasis is on the geometric interpretation, including a study of subspaces, lines, hyperplanes, and of the Euclidean group, including subgroups that are relevant for mathematical and physical purposes. ## Initial competences This course is attuned to college mathematics, in particular Euclidean planes and Euclidean threedimensional spaces. #### Final competences - 1 Analyse and solve a problem (theoretical, practical, or arising from an application) situated in vector spaces, in theory of matrices and determinants, or in Euclidean geometry. - 2 Use the new techniques both in pure mathematical or in applied context (including physics). - 3 Perform (simple) abstract reasonings, and write down the arguments in a rigorous proof. #### Conditions for credit contract Access to this course unit via a credit contract is determined after successful competences assessment (Approved) 1 #### Conditions for exam contract This course unit cannot be taken via an exam contract #### Teaching methods Seminar, Lecture ## Extra information on the teaching methods Lectures in which the theory is presented. Exercises classes in which the students solve exercises under supervision. #### Study material Type: Syllabus Name: Linear Algebra and Geometry 1 Indicative price: Free or paid by faculty Optional: no Language : Dutch Number of Pages : 186 Oldest Usable Edition: 2023-2024 Available on Ufora: Yes Available through Student Association: Yes #### References - P. Igodt & W. Veys, "Lineaire algebra", Universitaire Pers Leuven, 2011. ISBN 978-90-5867-879-9. [in Dutch.] - Gilbert Strang, "Introduction to Linear Algebra", Fourth Edition, Wellesley-Cambridge Press, ISBN: 9780980232714 #### Course content-related study coaching Students can ask questions on the theory and the exercises before, during and after the lectures. This is also possible on appointment or by email. There is interactive support via the Ufora forum. #### Assessment moments end-of-term assessment #### Examination methods in case of periodic assessment during the first examination period Written assessment with open-ended questions ## Examination methods in case of periodic assessment during the second examination period Written assessment with open-ended questions #### Examination methods in case of permanent assessment ## Possibilities of retake in case of permanent assessment not applicable #### Extra information on the examination methods The complete examination (both theory and exercises) are in written form, and open-book. The examination is made up in such a way that a large part of the course is covered, and such that it can be examined whether the students have sufficient understanding of the material. ## Calculation of the examination mark Theory and exercises are equally important for the computation of the end score (50% each). (Approved) 2