

Course Specifications

Valid as from the academic year 2024-2025

Logic (C003562)

Course size	(nominal values; actual values may depend on programme)				
Credits 6.0	Study time 165 h				
Course offerings and to	eaching methods in academic ye	ar 2024-2025			
A (semester 2)	Dutch	Gent	le	cture	
		seminar			
Lecturers in academic	year 2024-2025				
Weiermann, Andreas W			WE16	lecturer-in-charge	
Offered in the following programmes in 2024-2025				crdts	offering
Bachelor of Science in Mathematics				6	А
Teaching languages					
Dutch					
Keywords					
	lemma, axiom of choice, syntax, s leteness theorem, compactness th ms.		Skolem		
Position of the course					
results from first over logic. This kn analysis).	e we treat naive set theory, eleme order predicate logic. The goal is t owledge shall also be useful in ot c for the course on proof theory.	o impart broad basic	knowledge		
Contents					
1. Transfinite sets					
	axiom of choice and further equiva	alents			
3. First order lang 4. Quantifier elimi	uages, mathematical structures ination.				
	Skolem theorems				
6. Completeness-	and compactness theorem				
Initial competences					
-	s of the courses Analysis I and Alg	ebra I.			
Final competences					
	lculate with cardinalities.				
D Deine able to a	a a la da a a finida in da alta a ser de ser e				

- 2 Being able to apply transfinite induction and recursion.
- 3 Knowing several equivalents of Zorn's lemma.
- 4 Being able to show quantifier elimination for algebraically closed fields.
- $\mathbf{5}~$ Being able to apply the completeness-, compactness and Löwenheim Skolem
- theorems.
- 6 Being able to construct non standard models.

Conditions for credit contract

Access to this course unit via a credit contract is determined after successful competences assessment

Conditions for exam contract

This course unit cannot be taken via an exam contract

Teaching methods

Seminar, Lecture

Extra information on the teaching methods

Lecture, self-reliant study activities, seminar: coached exercises.

Study material

Type: Syllabus

Name: Sets, Models and Proofs Indicative price: Free or paid by faculty Optional: no Available on Ufora : Yes Online Available : Yes Available in the Library : Yes Available through Student Association : No Additional information: The lecture notes can also be bought in book form.

References

Moerdijk, Van Oosten. Sets, models and proofs. Springer Undergraduate Mathematics Series. Springer, Cham, 2018. xiv+141 pp. ISBN: 978-3-319-92413-7; 978-3-319-92414-4 Buchholz: Logic 1, Logic 2, downloadable via WWW, Enderton: A Mathematical Introduction into Logic. Academic Press. Shoenfield: Mathematical logic. Addison Wesley (from 1967 but still very readable, please check AMS reviews for an appraisel), Marker: Model Theory. Springer. (good book on model theory), Jech: Set Theory. Springer (the standard text book on set theory).

Course content-related study coaching

Lecturer and assistant are available for the student. An electronic environment allows easy communication between students and teachers.

Assessment moments

end-of-term assessment

Examination methods in case of periodic assessment during the first examination period

Written assessment with open-ended questions

Examination methods in case of periodic assessment during the second examination period

Written assessment

Examination methods in case of permanent assessment

Possibilities of retake in case of permanent assessment

examination during the second examination period is not possible

Extra information on the examination methods

The exam tests insight.

Calculation of the examination mark

First exam: periodic evaluation (100%). Second exam: periodic evaluation (100%).