

Course Specifications

From the academic year 2017-2018 up to and including the academic year

Marine GIS and Spatial Planning (C003875)

Course size	(nominal values; actual values may depend on programme)				
Credits 3.0	Study time 75 h	Ì	Contact hrs	48.0h	
Course offerings in academic year 2022-2023					
A (semester 1)	English	Gent			
Lecturers in academic year 2022-2023					
O'Connor, Ian			GALWAYO2 lecturer-in-charge		
Offered in the following programmes in 2022-2023				crdts	offering
International Master of Science in Marine Biological Resources				3	Α

Teaching languages

English

Keywords

Position of the course

- Introduction to maps and GIS
- Basic cartographic notions
- Map viewers vs. GIS software
- Data
- Data structure, types
- Data sources
- Remote sensing servers
- Layers
- Common vector operations. Data tables
- Common raster operations
- Map calculators (algebra)
- Interpolation
- Overlays between discrete (vectors) and surface (raster) layers

Intro and overview of satellite remote sensing

- Ocean color
- Infrared sensors and sSST [restricted now to Ocean Color datasets]
- Case studies and interfacing GIS and R: spatial patterns, basic habitat modeling (within GIS software), home-ranges, etc.
- Spatial planning
- Coastal Zone: planning and integrated management
- The coastal zone. Problems and risks
- Elements of spatial planning
- The general model. Phases: planning, diagnosis, implementing and evaluation
- Coastal zone management in the European Union: policy and laws
- The Mediterranean Protocol
- The green book on Maritime Policy
- Examples and case studies

Contents

- Introduction to maps and GIS
- Basic cartographic notions
- Map viewers vs. GIS software
- Data
- Data structure, types
- Data sources

- Remote sensing servers
- Layers
- Common vector operations. Data tables
- Common raster operations
- Map calculators (algebra)
- Interpolation
- Overlays between discrete (vectors) and surface (raster) layers
- Intro and overview of satellite remote sensing
- Ocean color
- Infrared sensors and sSST [restricted now to Ocean Color datasets]
- Case studies and interfacing GIS and R: spatial patterns, basic habitat modeling (within GIS software), home-ranges, etc.
- Spatial planning
- Coastal Zone: planning and integrated management
- The coastal zone. Problems and risks
- Elements of spatial planning
- The general model. Phases: planning, diagnosis, implementing and evaluation
- Coastal zone management in the European Union: policy and laws
- The Mediterranean Protocol
- The green book on Maritime Policy
- Examples and case studies

Initial competences

Basic understanding of major abiotic and biotic variables in marine science. Basic understanding of the dynamics of marine ecosystems. User-level ease with computers. Basic knowledge of data processing and analysis.

Final competences

- 1 Competence and autonomy with data types and availability in GIS and remote sensing.
- 2 Understanding of tools and algorithms common to most software in the field.
- 3 Understanding of the main tools in spatial planning; coordination and decision in practical case studies.

Conditions for credit contract

Access to this course unit via a credit contract is determined after successful competences assessment

Conditions for exam contract

This course unit cannot be taken via an exam contract

Teaching methods

Lecture, Seminar: practical pc room classes

Learning materials and price

References

Course content-related study coaching

Assessment moments

end-of-term assessment

Examination methods in case of periodic assessment during the first examination period

Skills test, Written examination, Open book examination

Examination methods in case of periodic assessment during the second examination period

Skills test, Written examination, Open book examination

Examination methods in case of permanent assessment

Possibilities of retake in case of permanent assessment

not applicable

Extra information on the examination methods

Computer-based exam, including short questions on concepts and practical exercises. Students can use all their course materials and the Internet during the exam.

Calculation of the examination mark

The grades will be quantitative; one third of the marks would be based on short, concept questions, and two-thirds would be based on practical exercises.