

Course Specifications

Valid as from the academic year 2024-2025

Groups and Representations (COO4217)

Course size	(nominal values; actual val	lues may depend on prog	ramme)		
Credits 4.0	Study time 120 h				
Course offerings and t	eaching methods in academic	: year 2024-2025			
A (semester 2)	Dutch	Gent	seminar		
			lecture		
Lecturers in academic	year 2024-2025				
Verstraete, Frank			WE05	lecturer-in-charge	
Offered in the following programmes in 2024-2025				crdts	offering
Bachelor of Science in Physics and Astronomy				4	А
Preparatory Course Master of Science in Physics and Astronomy				4	А
Preparatory Course Master of Science in Physics and Astronomy				4	А
Teaching languages					
Dutch					
Keywords					
	resentation theory of finite and jective representations	d continuous groups, poin	t and		
Position of the course					
This course unit b program Physics a	elongs to the learning pathway and Astronomy.	/ "Mathematics" in the Ba	chelor		
Contents					
1 Group Theory in	Physics: Overview (1.5h)				
a. Noethers the	orem				
b. Relativity					
d. Symmetry bre	cular and atomic spectra				
e. Particle physi	-				

- e. Particle physics
- 2 Group theory: basics (7.5h)
 - a. Introduction, definitions, symmetries in physics
 - b. Finite groups, multiplication table, permutation group
 - c. Subgroups, normal subgroups, direct products and semi-direct products

3 Representation theory (6h)

- a. Irreducible representations, equivalent representations
- b. Theory of characters and orthogonality theorems
- c. Tensor product representations and reduction to irreps
- d. Representation theory of the permutation group & Young tableaux
- e. Projective representations and applications in quantum mechanics
- f. Real, complex and quaternionic representations, and Kramers' theorem
- 4 Lie algebras and groups (6h)
 - a. Associativity, Lie groups, structure factors
 - b. Representation theory of SU(2) and SO(3)
 - c. Classification of semi-simple Lie groups: root vectors, Dynkin diagrams
 - d. Casimir operators
 - e. Peter-Weyl theorem, Haar measure

f. Schur-Weyl duality

- 5 Crystallography (1.5h)
 - a. Finite subgroups of the rotation group
 - b. Point groups, space groups, Bravais lattices
 - c. Group cohomology
 - d. Application: wallpaper groups

Initial competences

- Vector and Function Spaces
- Quantum mechanics I

Final competences

Solid basis in group theoretic notion relevant for quantum physics.

Conditions for credit contract

Access to this course unit via a credit contract is determined after successful competences assessment

Conditions for exam contract

This course unit cannot be taken via an exam contract

Teaching methods

Seminar, Lecture

Study material

Type: Syllabus

Name: Syllabus Indicative price: Free or paid by faculty Optional: no Additional information: available through Ufora

Type: Slides

Name: Lectures slides Indicative price: Free or paid by faculty Optional: no Additional information: available through Ufora

References

- Lecture Notes on Group Theory in Physics Arovas
- Symmetries, Lie algebras and representations: A graduate course for physicists Fuchs, Schweigert

Course content-related study coaching

Assessment moments

end-of-term assessment

Examination methods in case of periodic assessment during the first examination period

Written assessment

Examination methods in case of periodic assessment during the second examination period

Written assessment

Examination methods in case of permanent assessment

Possibilities of retake in case of permanent assessment

not applicable

Calculation of the examination mark

written exam, 60% theory, 40% exercises