

Course Specifications

Valid as from the academic year 2024-2025

Complex Analysis (COO4219)

Course size	(nominal values; actual valu	es may depend on prog	gramme)		
Credits 4.0	Study time 120 h				
Course offerings and te	aching methods in academic y	/ear 2024-2025			
A (semester 1)	Dutch	Gent		lecture	
				seminar	
Lecturers in academic y	ear 2024-2025				
Vandersickel, Nele			WE05	lecturer-in-o	harge
Offered in the following programmes in 2024-2025				crdts	offering
Bachelor of Scienc	e in Physics and Astronomy			4	А
Teaching languages					
Dutch					
Keywords					
see content					
Position of the course					
This course unit be	longs to the learning pathway '	'Mathematics" in the B	achelor		
program Physics an The sim of this cou	nd Astronomy. rse is to let the student work w	ith complex numbers a	and all their		
annlications			anu all then		
Contents					
1 Complex function	ıs (2h)				
1 complex algebra: elementary operations					
2 functions of complex variable					
3 Complex line and contour integrals (definition)					
4 Green's theorem					
2. Holomorphic Functions (5h)					
examples complex derivative properties geometric interpretation conformal					
mapping					
 rows and series of 	of complex functions, converger	nce theorems			
Cauchy's theorem	۱ 				
Laurent's theorem singular points a	n, Laurent series, analytic conti nd the residual theorem	nuation			
 elementary functions and their inverse; polynomials and rational functions. 					
exponential			,		
 and logarithmic 	unction, trigonometric and hyp	erbolic functions and t	heir		
inverses					
 Contour Integral Limits 	s and applications (SN)				
Trigonometric in	earals				
• Improper integrals					
 Summation of se 	ries				
 Laplace - transfo 	rmation and inversion				
 Asymptotic developments: stationary phase method and saddle point method 					
4. Harmonic function)NS (ZN)) for the Lanlace operator in he	unded areas			
Dirichlet and Nei	imann problem for the Lanlace	operator in unhounder	l areas		

- Applications
- Spherical Harmonies revisited

The teacher reserves the right to make changes to this content

Initial competences

Final competences

- 1 The aim of this course is to let the student work with complex numbers and all
- their applications.
- 2 To be able to work out contour integrals.
- 3 To be able to work out exercises on harmonic functions.

Conditions for credit contract

Access to this course unit via a credit contract is determined after successful competences assessment

Conditions for exam contract

This course unit cannot be taken via an exam contract

Teaching methods

Seminar, Lecture, Independent work

Extra information on the teaching methods

The students will have to solve problems during the classes

Study material

Type: Syllabus

Name: Complex analysis Indicative price: Free or paid by faculty Optional: no Language : English Number of Pages : 192 Available on Ufora : Yes Online Available : No Available in the Library : No Available through Student Association : Yes Additional information: You will get the course via Ufora and you can chose if you want to print the course

References

Fundamentals of Complex Analysis: with Applications to Engineering and Science by <u>Edward B. Saff</u>

Course content-related study coaching

Guided exercises

Assessment moments

end-of-term and continuous assessment

Examination methods in case of periodic assessment during the first examination period

Written assessment with open-ended questions

Examination methods in case of periodic assessment during the second examination period

Written assessment with open-ended questions

Examination methods in case of permanent assessment

Written assessment

Possibilities of retake in case of permanent assessment

not applicable

Extra information on the examination methods

There will be 2 exercise sessions that are compulsory. During these session students will solve exercises, each for 1 of the 20 exam points. Feedback will be provided.

Exam will consist exclusively of exercises that will gauge the student's knowledge of complex analysis for 18 of the 20 points

Calculation of the examination mark

The final score is calculated by adding the two points earned throughout the year (2 mandatory practice sessions, each worth 1 point) to the final exam score (worth

18 points). This results in a total of 20 points.

Facilities for Working Students

Working students are allowed to process exercises and teaching material themselves and only participate in the final exam