

# Lourse **Specifications**

Valid in the academic year 2024-2025

# Many-body Physics (C004515)

| Course size                                      | (nominal values; actual values may depend on programme) |      |      |                    |   |
|--------------------------------------------------|---------------------------------------------------------|------|------|--------------------|---|
| Credits 6.0                                      | Study time 180 h                                        |      |      |                    |   |
| Course offerings in aca                          | demic year 2024-2025                                    |      |      |                    |   |
| A (semester 2)                                   | English                                                 | Gent |      |                    |   |
| Lecturers in academic                            | year 2024-2025                                          |      |      |                    |   |
| Van Neck, Dimitri                                |                                                         |      | WE05 | lecturer-in-charge |   |
| Offered in the following programmes in 2024-2025 |                                                         |      |      | crdts              | 0 |
| Master of Science in Physics and Astronomy       |                                                         |      |      | 6                  |   |

# Exchange Programme in Physics and Astronomy (Master's Level)

## **Teaching languages**

English

#### Keywords

Many-body physics, second quantization, mean field, propagator, collective states, superfluidity, superconductivity

#### Position of the course

In this course the theoretical description of quantum mechanical many-particle systems is the object of study. Based on examples from molecular, atomic, condensed matter, and nuclear physics, a unified treatment is provided through the concept of the Green's function or propagator in a many-body system.

#### Contents

Second quantization for fermions and bosons. Two-paricle states and interactions. Mean-field techniques. Perturbation series for the single-particle propagator. Feynman diagrams. Dyson equation, two-particle propagator and vertex function. Nonperturbative aspects. Hartree-Fock in atoms and molecules. Study of secondorder selfenergy: static and dynamic contributions. Quasiparticles in Landau-Migdal framework. Excited states. Collective motion. Random phase approximation. Plasmon excitations in the electron gas. Repulsive short-range interactions. Ladder diagrams. Saturation in nuclear matter. Boson systems. Bose-Einstein condensation. Gross-Pitaevskii equation for ultracold atomic gases. Bogoliubov perturbation theory. Hugenholtz-Pines theorem. first-order results for dilute Bose gas. Superfluidity in Helium-4. Pairing in fermion systems. BCS theory and metallic superconductivity. Non-Fermi liquids.

## Initial competences

Good knowledge of quantum mechanics

#### **Final competences**

- 1 Acknowledge the coherence of typical many-body aspects and mechanisms in a wide range of physical systems.
- 2 Be able to discuss the applicability and limitations of mean-field techniques in electronic and nuclear systems.
- 3 Understand the structure of normal fermion systems and the concept of quasiparticles.
- 4 Calculate and manipulate Feynman diagrams in a many-body context.
- 5 Practical use of propagators as an alternative to wave functions, and their link with experimental quantities, in various problems.
- 6 Understand the BCS theory for metallic superconductors.

offering A

A

6

#### Conditions for credit contract

Access to this course unit via a credit contract is determined after successful competences assessment

# Conditions for exam contract

This course unit cannot be taken via an exam contract

#### **Teaching methods**

Seminar, Lecture

#### Extra information on the teaching methods

Project: the students have to choose a numerical exercise from a list. They have to solve it using their software of choice, and to hand in a written report.

### Study material

Type: Handbook

Name: Many-Body Theory Exposed: propagator description of quantum mechanics in many-body systems Indicative price: Free or paid by faculty Optional: yes Author : W.H. Dickhoff and D. Van Neck Additional information: World Scientific 2005, ISBN 981-256-294-X

Type: Handouts

Name: Lecture material Indicative price: € 10 Optional: no

#### References

"A guide to Feynman diagrams in the many-body problem", R.D. Mattuck, Dover Publications; 2nd edition (June 1, 1992)

#### Course content-related study coaching

The lecturer is available for explanation during and after the lectures. There is assistance during the tutorial classes and for the projects. Interactive support through Ufora (e-mail).

#### Assessment moments

end-of-term and continuous assessment

#### Examination methods in case of periodic assessment during the first examination period

Oral assessment, Written assessment with open-ended questions

#### Examination methods in case of periodic assessment during the second examination period

Oral assessment, Written assessment with open-ended questions

#### Examination methods in case of permanent assessment

Assignment

#### Possibilities of retake in case of permanent assessment

examination during the second examination period is possible

#### Calculation of the examination mark

Permanent evaluation (25%) + Periodical evaluation (75%)