Course Specifications
Valid as from the academic year 2021-2022

Mathematics in Photonics (E002640)
Due to Covid 19, the education and evaluation methods may vary from the information displayed in the schedules and course details. Any changes will be communicated on Ufora.

Course offerings and teaching methods in academic year 2021-2022
A (semester 1) English Gent seminar: coached exercises 15.0 h
O (semester 1)

Offered in the following programmes in 2021-2022

<table>
<thead>
<tr>
<th>Programme</th>
<th>credits</th>
<th>offering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridging Programme Master of Science in Photonics Engineering</td>
<td>4</td>
<td>A</td>
</tr>
<tr>
<td>European Master of Science in Photonics</td>
<td>4</td>
<td>A</td>
</tr>
<tr>
<td>Master of Science in Photonics Engineering</td>
<td>4</td>
<td>A, O</td>
</tr>
</tbody>
</table>

Teaching languages
Dutch, English

Keywords
applied mathematics, photonics

Position of the course
Exposing the student to various mathematical concepts often used in photonics. The aim is to make the student acquainted with the basic principles and references, in order to allow him to independently further research these concepts.

Contents
• 1: Complex analysis: wave problems as problems from complex analysis, complex functions, analytic functions, derivatives, line integrals, poles, zeros, branch cuts, residue calculus, limit theorems, Cauchy principal value, Kramers-Kronig dispersion relation, conformal transformations, bend losses in optical waveguides
• 2: Special functions: modes of an optical fibre, Bessel and Neuman functions, generating functions, recursion relations, integrals, orthogonality, series expansion, higher order solutions of the paraxial wave equation, Hermite polynomials, generating function, recurrence relation, differential equation, orthogonality, series expansion
• 3: Numerical techniques: finite elements, finite differences, variational methods, eigenmode expansion, method of weighted residuals
• 4: Periodicity and symmetry in photonic systems: using symmetries to classify modes, Bloch theorem, band diagrams, photonic crystals
• 5: Dynamical systems: origins of non-linearity in optical systems, stability, fixed points, the logistic map, saddle points, bifurcations, chaos, period doubling, Lyaponov exponent, stable and unstable manifold

Initial competences
mathematics from the bachelor program

Final competences
1 being able to apply complex analysis to photonic problems
2 being able to apply special functions and orthogonal polynomials to photonic problems
3 getting a basic insight in the effects of symmetry on photonic systems
4 getting a basic insight into numerical techniques for photonics

(Last updated: 24-02-2021)
5 being able to study the dynamics of a photonic system
6 being able to study a new mathematical topic in an independent and critical manner and apply it in a creative way

Conditions for credit contract
Access to this course unit via a credit contract is determined after successful competences assessment

Conditions for exam contract
This course unit cannot be taken via an exam contract

Teaching methods
Guided self-study, seminar: coached exercises, lecture: response lecture

Learning materials and price
full lecture notes (free), videos

References

Course content-related study coaching

Evaluation methods
end-of-term evaluation and continuous assessment

Examination methods in case of periodic evaluation during the first examination period
Open book examination, oral examination

Examination methods in case of periodic evaluation during the second examination period
Open book examination, oral examination

Examination methods in case of permanent evaluation
Participation

Possibilities of retake in case of permanent evaluation
examination during the second examination period is possible

Calculation of the examination mark

(Approved)