

Course Specifications

Valid as from the academic year 2024-2025

Optical Materials (E024800)

Course size (nominal values; actual values may depend on programme)

Credits 6.0 Study time 180 h

Course offerings and teaching methods in academic year 2024-2025

A (semester 1) English Gent lecture

seminar

lecturer-in-charge

TW06

0 (semester 1) English Gent

Lecturers in academic year 2024-2025

Beeckman, Jeroen

Danckaert, Jan VUB	co-lecturer	
Ussembayev, Yera TW06	co-lecturer	
Offered in the following programmes in 2024-2025	crdts	offering
Bridging Programme Master of Science in Photonics Engineering	6	Α
Master of Science in Electrical Engineering (main subject Communication and Informatic Technology)	on 6	Α
Master of Science in Electromechanical Engineering(main subject Control Engineering an Automation)	nd 6	Α
Master of Science in Electromechanical Engineering(main subject Electrical Power Engineering)	6	Α
Master of Science in Electrical Engineering (main subject Electronic Circuits and Systems	6	Α
Master of Science in Electromechanical Engineering(main subject Maritime Engineering)	6	Α
Master of Science in Electromechanical Engineering(main subject Mechanical Construction)	6	Α
Master of Science in Electromechanical Engineering(main subject Mechanical Energy Engineering)	6	Α
Master of Science in Photonics Engineering	6	A, 0

Teaching languages

English

Keywords

microscopic, anisotropy, non-linearity, optical properties

Position of the course

Introducing the microscopic origin of optical phenomena and transferring concepts from microscopic to macroscopic descriptions. Illustrating optical properties like anisotropy, non-linearity and variation by means of electric, elastic, acoustic or magnetic effects in basic components. All lectures are held in Gent, co-lecturer from VUB: Jan Danckaert.

Contents

- · Introduction: Introduction
- Properties of linear isotropic materials: examples, microscopic theory, definitions
- Light propagation in anisotropic dielectrics: polarisation, propagation, matrix formalism, reflection
- Properties of linear anisotropic dielectrics: tensors, types of materials, optical activity

(Approved) 1

- Modification of optical properties: microscopic theory, electro- photo- elastoacousto- magneto- optic effects
- Liquid crystals: types of ordering, switching behavior Non-linear optical materials: second-order effects, phase-relations, OPO, material examples

Initial competences

bachelor in applied physics or bachelor in electrotechnical engineering

Final competences

- 1 Understand and explain the microscopic and macroscopic theory of linear (isotropic and anisotropic) optical materials and light propagation.
- 2 Understand and explain mechanisms for modifying the optical properties of materials: electric, magnetic, elastic and acoustic methods, including liquid crystals.
- 3 Understand and explain basic non-linear optical effects
- 4 Solve exercises that are based on linear (isotropic and anisotropic) optical materials, modification of optical properties and liquid crystals.
- 5 Calculate the propagation of light based and the change in polarization with the Jones calculus.
- 6 Make written and oral reports about an optical phenomenon or device

Conditions for credit contract

Access to this course unit via a credit contract is determined after successful competences assessment

Conditions for exam contract

This course unit cannot be taken via an exam contract

Teaching methods

Seminar, Lecture

Extra information on the teaching methods

lectures about theory work sessions: guided exercises, PC practicum, literature study with presentation and report

Study material

Type: Syllabus

Name: Course notes for Optical Materials

Optional: no
Language: English
Number of Pages: 200
Available on Ufora: Yes
Online Available: No
Available in the Library: No

Indicative price: € 7

Available through Student Association: Yes

References

- Optical Waves in Crystals, A. Yariv and P. Yeh, John Wiley and Sons, New York
- Introduction to Complex Mediums for Optics and Electromagnetics, Weiglhofer and Lakhtakia, SPIE press, Bellingham

Course content-related study coaching

Help with solving exercices and with the PC practicum.

Assessment moments

end-of-term and continuous assessment

Examination methods in case of periodic assessment during the first examination period

Oral assessment, Written assessment open-book

Examination methods in case of periodic assessment during the second examination period

Oral assessment, Written assessment open-book

Examination methods in case of permanent assessment

Assignment

Possibilities of retake in case of permanent assessment

examination during the second examination period is possible

(Approved) 2

Extra information on the examination methods

During examination period:

1. theory exam: closed-book exam with oral examination;

2, problem solving exam: the syllabus can be used.

During semester:

graded project reports; graded oral presentation. Frequency: 1 computerpracticum (written report): 10%, week 10. 1 literature study (written report and oral presentation): 20%, week 12.

Calculation of the examination mark

Special conditions: In the exam period: 70%. During the lecturing time: 10% + 20%. The scores obtained during the lecturing time are transferred to the second exam session.

(Approved) 3