Technological Processes for Photonics and Electronics: Laboratory (E030890)

Due to Covid 19, the education and evaluation methods may vary from the information displayed in the schedules and course details. Any changes will be communicated on Ufora.

Lecturers in academic year 2021-2022
Van Thourhout, Dries
TW05 lecturer-in-charge

Course offerings in academic year 2021-2022
A (year) English Gent
B (year) Dutch

Offered in the following programmes in 2021-2022

<table>
<thead>
<tr>
<th>Programme</th>
<th>credits</th>
<th>offering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridging Programme Master of Science in Photonics Engineering</td>
<td>4</td>
<td>A</td>
</tr>
<tr>
<td>European Master of Science in Photonics</td>
<td>4</td>
<td>A</td>
</tr>
<tr>
<td>Master of Science in Photonics Engineering</td>
<td>4</td>
<td>B</td>
</tr>
<tr>
<td>Master of Science in Photonics Engineering</td>
<td>4</td>
<td>A</td>
</tr>
</tbody>
</table>

Teaching languages
Dutch, English

Keywords
Photonics, lab work, clean room, fabrication, technology, lithography, etching, deposition, design and CAD.

Position of the course
This course consists of a series of lab exercises and small projects aiming at learning the student how to carry out work in a lab and cleanroom environment in an independent way. The exercises are carried out in small groups (2-3 persons). The course follows a course that describes the physics of technological processes in a theoretical way and makes the student familiar with standard fabrication technologies for photonic and semiconductor devices. In the first part individual process modules are studied. In the second part students work towards a larger project combining design, CAD, fabrication (using first semester process modules) and characterisation.

Contents
- * Introduction: Safety
- * Lithography
- * Etching technology: Wet Etching, Dry etching (plasma etching)
- * Deposition: Metalization, Dielectrica
- * Characterisation technologies: Electron microscopy, Profilometry, Ellipsometry
- * Bonding: Waferbonding
- * Maskdesign
- * Oxidation technologies
- * Characterisation techniques (SEM, AFM, ellipsometry)
- * Design and fabrication of own device

Initial competences
Course physics of technological processes or similar

Final competences
1 Safely entering a cleanroom and carrying out research in a cleanroom environment.
2 Carry out basic steps for the fabrication of semiconductor devices such as lithography, etching, deposition, bonding.
3 Designing a fabrication flow for a photonic device.
4 Using advanced mask software for creating gds-files.
5 Independently fabricating a semiconductor component.

Conditions for credit contract
Access to this course unit via a credit contract is determined after successful competences assessment

Conditions for exam contract
This course unit cannot be taken via an exam contract

Teaching methods
Practicum, project

Extra information on the teaching methods
Part 1: lab exercises in small groups (2-3 persons), learn basic processing skills (lithography, etching, deposition...)
Part 2: individual project - design of photonic IC, preparation of processing scheme, processing in cleanroom, characterisation

Learning materials and price
Syllabus (English), elektronisch (gratis)
References

Course content-related study coaching

Evaluation methods
day-of-term evaluation and continuous assessment

Examination methods in case of periodic evaluation during the first examination period
Oral examination, report

Examination methods in case of periodic evaluation during the second examination period
Report

Examination methods in case of permanent evaluation
Participation, report

Possibilities of retake in case of permanent evaluation
examination during the second examination period is possible in modified form

Extra information on the examination methods
Project is evaluated on the basis of report and oral discussion of report

Calculation of the examination mark
50% lab exercises, 50% project report

(Approved)