

Course Specifications

Valid in the academic year 2022-2023

15.0h 25.0h 7.5h 15.0h 5.0h 7.5h 55.0h

Electromagnetic-aware High Frequency Design (E033021)

Course size	(nominal values; actual va	lues may depend or	n programme)		
Credits 6.0	Study time	180 h	Contact hrs	67.5h	
Course offerings and tea	ching methods in academi	c year 2022-2023			
A (semester 1)	English	Gent		seminar	
				seminar: coached	exercises
				excursion	
				lecture	
				practicum	
B (semester 1)	Dutch	Gent		excursion	
				guided self-study	
				practicum	
Lecturers in academic ye	ar 2022-2023				
Rogier, Hendrik	di EULE EULS		TW05	lecturer-in-c	harne
Vande Ginste, Dries			TW05	co-lecturer	
Offered in the following programmes in 2022-2023				crdts	offering
Bridging Programme Master of Science in Electrical Engineering(main subject				6	А
Communication and Information Technology)					
Bridging Programme Master of Science in Electrical Engineering(main subject Electronic				onic 6	Α
Circuits and Systems) Master of Science in Electrical Engineering (main subject Communication and Information				ation 6	Α
Technology)	r Etectricat Engineering (ina	m subject community			
	n Electromechanical Enginee	ering(main subject C	ontrol Engineerin	g and 6	Α
Automation) Master of Science in	n Electromechanical Enginee	ring(main subject F	lectrical Power	6	Α
Engineering)				· ·	
	n Electrical Engineering (ma		· · · · · · · · · · · · · · · · · · ·		Α
Master of Science in Electromechanical Engineering(main subject Maritime Engineerin					Α
Master of Science in Electromechanical Engineering(main subject Mechanical				6	Α
Construction) Master of Science in	n Electromechanical Enginee	ering(main subiect M	lechanical Energy	6	Α
Engineering)	_	30			
European Master of Science in Photonics				6	Α
Master of Science in Electrical Engineering				6	В
Master of Science in Photonics Engineering				6	Α

Teaching languages

English, Dutch

Keywords

multi-port, microwave circuits, circuit models, EMC, signal and power integrity, interference, norms

Position of the course

- Insight in circuit and EMC concepts
- Application of the concepts to interconnections and IC-packages
- Familiarise students with EMC norms

Contents

(Approved) 1

- Black box models for multi-port circuits: Concept of port and port impedance and S-parameters, Passivity and lossless properties of multi-port circuits, Multi-port applications and measurements
- Extraction of circuit models of multi-port circuits: Circuit models for multi-port circuits, Parameter extraction for transfer function models, Parameter extraction for physical models
- Analysis and design of passive microwave components: circulator, isolator, directional coupler, filters, matching networks
- Circuit properties of interconnections and IC-packages: Models for reflection, transmission and attenuation, Crosstalk and differential versus even mode, Measurements on interconnections and IC-packages
- Non-linear termination of interconnections: Circuit models for non-linear terminations, Circuit simulation techniques
- Concepts for EMC in circuits: Emission, immission and interference, Routes for an EMC problem
- Intra-system interference: Concepts of ground, earth, and reference, Static and dynamic noise margin, Modelling of the power supply circuit, Switching noise
- Inter-system interference: Radiative sources, Shielding (cables, connectors, houding), Conductive sources, Filtering for conductive interference
- EMC norms and certification: Emission and immission norms, certification process

Initial competences

Having succesfully completed the courses on "Applied Electromagnetics" or "Electromagnetism II" or having acquired the final competences provided by these courses in any other way.

Final competences

- 1 Analyse and design microwave circuits based on impedance, admittance and scattering matrices.
- 2 Synthesize filters and matching networks.
- 3 Have insight in the role of electromagnetic phenomena on EM aware design, including radiated/conducted emission/immunity.
- 4 Be familiar with EMC norms.

Conditions for credit contract

Access to this course unit via a credit contract is determined after successful competences assessment

Conditions for exam contract

This course unit cannot be taken via an exam contract

Teaching methods

Lecture: plenary exercises, Practicum, Demonstration, Guided self-study, Seminar, Excursion, Lecture, Self-reliant study activities, Seminar: coached exercises

Extra information on the teaching methods

Classroom lectures: Mix of on-campus and online teaching; Flipped classroom with interactive contact sessions; Scored exercises as homework; Classroom problem solving sessions; Lab sessions

In particular the part EMC/SI/PI consists of lectures about theory and exercises, without making a strict, traditional distinction between them. All lectures are seminars which require interaction with and input from the students. If circumstances permit (e.g., COVID-dependent cirumstances), a mandatory company visit takes place. There are also mandatory lab sessions.

Learning materials and price

syllabus (10EUR in print, free electronic version on UFora) + handouts with notes (free electronic version on UFora)

References

David M. Pozar, Microwave Engineering, third edition, John Wiley & Sons, 2004 **Jasper Goedbloed, Electromagnetic Compatibility**, Prentice Hall 1992, ISBN 0-13-249293-8, 381 pp

Prentice Hall, 2nd edition: 2010

Introduction to Electromagnetic Compatibility

C. R. Paul

ISBN: 978-0-471-75500-5

(Approved) 2

John Wiley & Sons, Inc., 2nd edition: 2006 **Signal and Power Integrity -- Simplified E. Bogatin**

ISBN: 978-0-13-234979-6

Course content-related study coaching

Assessment moments

end-of-term and continuous assessment

Examination methods in case of periodic assessment during the first examination period

Written examination, Open book examination

Examination methods in case of periodic assessment during the second examination period

Written examination, Open book examination

Examination methods in case of permanent assessment

Skills test, Report

Possibilities of retake in case of permanent assessment

examination during the second examination period is possible in modified form

Extra information on the examination methods

During examination period:

Part EMC/SI/PI:

Written closed-book exam

- Theory + theoretical excercises
- Questions about EMC norms in the context of the Certification Lab visit

Part Design of Passive Microwave Circuits:

A) Written closed-book exam

- Theory

B) Written open-book exam

- Exercises

During semester. Graded lab sessions, Graded exercises as homework. **Second chance:** Possible in adapted form

Calculation of the examination mark

Evaluation throughout semester as well as during examination period. Special conditions: 1/2 Exam Design of Passive Microwave Circuits (1/6 theory exam + 1/6 exercise exam + 1/6 scored exercises as homework) + 3/8 Exam EMC/SI/PI + 1/8 Lab reports+Certification Lab visit.

Students who eschew one or more parts of the assessment (part Design of Passive Microwave Circuits, part EMC/SI/PI, part continuous assessment) cannot obtain a pass mark for the course unit. Should the final mark be higher than 7/20, it will be reduced to the highest non-passable mark (i.e. 7/20). When the student obtains less than 8/20 for at least one of the components (part Design of Passive Microwave Circuits, part EMC/SI/PI, part continuous assessment), they can no longer pass the course unit as a whole. If the total score does turn out to be a mark of ten or more out of twenty, this is reduced to the highest fail mark (9/20).

(Approved) 3