

## Parallel Computer Systems (E034140)

**Course size** *(nominal values; actual values may depend on programme)*

**Credits 6.0** **Study time 180 h**

**Course offerings and teaching methods in academic year 2025-2026**

|                |         |      |                    |
|----------------|---------|------|--------------------|
| A (semester 1) | English | Gent | lecture<br>seminar |
|----------------|---------|------|--------------------|

|                |       |      |  |
|----------------|-------|------|--|
| B (semester 1) | Dutch | Gent |  |
|----------------|-------|------|--|

**Lecturers in academic year 2025-2026**

|                  |      |                    |
|------------------|------|--------------------|
| Eeckhout, Lieven | TW06 | lecturer-in-charge |
|------------------|------|--------------------|

**Offered in the following programmes in 2025-2026**

|                                                                                                     | <b>crdts</b> | <b>offering</b> |
|-----------------------------------------------------------------------------------------------------|--------------|-----------------|
| Bachelor of Science in Computer Science                                                             | 6            | A               |
| Master of Science in Teaching in Science and Technology(main subject Computer Science)              | 6            | A               |
| Bridging Programme Master of Science in Bioinformatics(main subject Engineering)                    | 6            | A               |
| Bridging Programme Master of Science in Computer Science Engineering                                | 6            | A               |
| Master of Science in Electromechanical Engineering(main subject Control Engineering and Automation) | 6            | A               |
| Master of Science in Electromechanical Engineering(main subject Electrical Power Engineering)       | 6            | A               |
| Master of Science in Bioinformatics(main subject Engineering)                                       | 6            | A               |
| Master of Science in Electromechanical Engineering(main subject Maritime Engineering)               | 6            | A               |
| Master of Science in Electromechanical Engineering(main subject Mechanical Construction)            | 6            | A               |
| Master of Science in Electromechanical Engineering(main subject Mechanical Energy Engineering)      | 6            | A               |
| Master of Science in Computer Science Engineering                                                   | 6            | B               |
| Master of Science in Computer Science Engineering                                                   | 6            | A               |

**Teaching languages**

English, Dutch

**Keywords**

Computer architecture, instruction-level parallelism, data-level parallelism, memory-level parallelism, thread-level parallelism, superscalar processing, speculative execution, shared-memory computer systems, cache coherency, memory consistency, multi-core processors, multi-threading, data centers, supercomputers, system performance fundamentals, impact of technology on architecture, power/energy, reliability and fault-tolerant computing

**Position of the course**

This course continues on the courses 'Computer Architecture' and 'Operating Systems'.

This course describes:

- modern high-performance microarchitectural techniques implemented in contemporary microprocessors for exploiting instruction-level parallelism and for bridging the memory wall;
- methods for exploiting thread-level parallelism, including fundamentals of shared-memory multiprocessors, multicore and manycore processor architectures, multi-threading;
- basics of datacenter and supercomputer organization;

- impact of technology including power/energy and reliability;
- fundamentals in systems performance.

## Contents

### Processor architecture

- Exploiting instruction-, data- and memory-level parallelism
- Superscalar processor architectures
  - Pipelining, in-order, out-of-order, speculative execution
  - Memory hierarchy

### Multiprocessor architecture

- Exploiting thread-level parallelism
- Fundamentals of shared-memory systems
  - Cache coherency, memory consistency, synchronization
- Multicore and manycore architectures
- Multi-threading (simultaneous, fine-grained, coarse-grained, GPU)
- Interconnection networks

### Data center and supercomputer architecture

- Organization
- Cost analysis

### Performance, power and reliability issues – impact of technology

- Iron Law of Performance, Amdahl's Law
- Dynamic and static power consumption, power- and thermal-aware design
- Fault-tolerance, soft and hard errors, redundant computation

## Initial competences

It is expected that the contents of the courses 'Computer Architecture' (obligatory) and 'Operating Systems' (not obligatory, but recommended) are well understood.

## Final competences

- 1 Understand and be able to describe the architecture and their impact on performance of superscalar processor architectures, shared-memory multiprocessors, multi-threading, datacenters, supercomputers.
- 2 Understand and be able to describe the impact of technology on parallel computer systems.

## Conditions for credit contract

Access to this course unit via a credit contract is determined after successful competences assessment

## Conditions for exam contract

This course unit cannot be taken via an exam contract

## Teaching methods

Seminar, Lecture

## Study material

### Type: Syllabus

Name: exercises, exams previous years, articles  
 Indicative price: Free or paid by faculty  
 Optional: no  
 Language : English  
 Number of Pages : 250  
 Available on Ufora : Yes  
 Online Available : Yes  
 Available in the Library : No  
 Available through Student Association : No

### Type: Slides

Name: theory  
 Indicative price: Free or paid by faculty  
 Optional: no  
 Language : English  
 Number of Slides : 1000  
 Available on Ufora : Yes

Online Available : Yes  
Available in the Library : No  
Available through Student Association : No

## References

Computer Architecture: A Quantitative Approach, Sixth Edition, John. L. Hennessy  
and David A. Patterson, Morgan Kaufmann Publishers

## Course content-related study coaching

### Assessment moments

end-of-term and continuous assessment

### Examination methods in case of periodic assessment during the first examination period

Written assessment open-book

### Examination methods in case of periodic assessment during the second examination period

Written assessment open-book

### Examination methods in case of permanent assessment

Assignment

### Possibilities of retake in case of permanent assessment

examination during the second examination period is possible

### Extra information on the examination methods

- During examination period: written open-book exam.
- Second chance: written open-book exam.
- During semester: graded project reports (15% of total score). Second chance: possible.

### Calculation of the examination mark

Evaluation throughout semester as well as during examination period. Special conditions: A combination of the exam and the project work (15% of the total score). A student only passes the course if he/she passes the exam.

If the score for the periodic evaluation is lower than 10/20 and the total score is higher than 9/20, the total score will be reduced to 9/20. (Student can only pass the course if the student passes the periodical evaluation.)