

Fluid Machines (E048100)

Course size *(nominal values; actual values may depend on programme)*

Credits 6.0 **Study time 180 h**

Course offerings and teaching methods in academic year 2026-2027

A (semester 1)	English	Gent	
B (semester 1)	Dutch	Gent	independent work

Lecturers in academic year 2026-2027

Degroote, Joris	TW08	lecturer-in-charge
Lecompte, Steven	TW08	co-lecturer

Offered in the following programmes in 2026-2027

	crdts	offering
Bridging Programme Master of Science in Electromechanical Engineering(main subject Maritime Engineering)	6	A
Bridging Programme Master of Science in Engineering: Ships and Marine Technology	6	A
Bridging Programme Master of Science in Mechanical and Electrical Systems Engineering	6	A
Master of Science in Electromechanical Engineering(main subject Maritime Engineering)	6	B
Master of Science in Electromechanical Engineering(main subject Maritime Engineering)	6	A
Master of Science in Electromechanical Engineering	6	B
Master of Science in Engineering: Ships and Marine Technology	6	B
Master of Science in Engineering: Ships and Marine Technology	6	A
Master of Science in Fire Safety Engineering	6	A
Master of Science in Mechanical and Electrical Systems Engineering	6	A

Teaching languages

English, Dutch

Keywords

Volumetric machines, turbomachines

Position of the course

This is the fourth course in the learning line thermo-fluids

Contents

- Working principle and terminology of volumetric machines.
- Volumetric pumps: operation and design, properties and applications, volumetric and energetic study, fluid stroke, valve design, construction, construction, discussion of various types of pumps, flow control, energy efficiency at full load and part load
- Volumetric compressors: applications and versions, operation, single-stage and multi-stage compression, volumetric and energetic study, components, implementation, discussion of various types of compressors, flow control, energy efficiency at full load and part load
- Introduction to volumetric expanders
- Principles of turbomachines: axial machines, radial machines, flow analysis, work transfer, energy analysis, degree of reaction, characteristics
- Fans: types, flow analysis, characteristics
- Turbopumps: cavitation, design, constructive aspects, self-priming, unstable operation, special pumps, dynamic similitude, nondimensional groups, characteristic numbers, design diagrams
- Steam turbines: application, basic principles, impulse turbines, reaction turbines,

- design
- Hydraulic turbines: application, types
- Wind turbines: application, types, performance, matching to a wind regime
- Introduction to turbocompressors: characteristics, limits

Initial competences

This course builds on certain course competences/learning outcomes of the courses Transport Phenomena, Technical Thermodynamics and Heat and Flow Engineering.

Final competences

- 1 Derive basic functioning of fluid machines.
- 2 Derive parameter choice, layout and performance of fluid machines.
- 3 Calculate the performance of a fluid machine by hand.

Conditions for credit contract

Access to this course unit via a credit contract is determined after successful competences assessment

Conditions for exam contract

This course unit cannot be taken via an exam contract

Teaching methods

Seminar, Lecture, Practical, Independent work

Extra information on the teaching methods

- The theory is taught in lectures.
- Exercises are made by the students, guided by a teaching assistant.
- Practical with different types of fluid machine

Study material

Type: Syllabus

Name: Syllabus

Indicative price: Free or paid by faculty

Optional: no

Type: Slides

Name: Slides (Enligsh)

Indicative price: Free or paid by faculty

Optional: no

References

- Pump handbook, McGraw-Hill
- Compressor Handbook, McGraw-Hill
- Fundamentals of Turbomachines, Springer

Course content-related study coaching

- Interactive support through the electronic learning platform (forums, e-mail), in person: after agreement on date, fixed contact hour: immediately before and after lectures.
- Additional guidance by assistant for exercise classes

Assessment moments

end-of-term assessment

Examination methods in case of periodic assessment during the first examination period

Oral assessment, Written assessment

Examination methods in case of periodic assessment during the second examination period

Oral assessment, Written assessment

Examination methods in case of permanent assessment

Possibilities of retake in case of permanent assessment

not applicable

Extra information on the examination methods

During examination period: oral closed-book exam with written preparation (theory); written open-book exam (exercises).

Calculation of the examination mark

Weighting to determine final score: theory exam 45%, exercises exam 45% and practical 10%.