

Course Specifications

Valid as from the academic year 2024-2025

Ethics, Engineering and Society (E075310)

Course size	(nominal values; actual valu	ies may depend on programme)		
Credits 3.0	Study time 9	0 h		
Course offerings and teaching methods in academic year 2024-2025				
A (semester 2)	Dutch	Gent	lecture	
Lecturers in academic ye	ear 2024-2025			
Segers, Seppe		LW01	lecturer	-in-charge
-	programmes in 2024-2025		crdts	offering
Engineering Techno	ology)	aain subject Electronics and ICT	3	А
	in Engineering Technology(m	nain subject Information Engineering	3	А
Technology) Master of Science i Technology)	n Electrical Engineering (main	subject Communication and Inform	ation 3	А
	n Electromechanical Engineer	ing(main subject Control Engineerin	g and 3	А
· · · · · ·	n Business Engineering(main	subject Data Analytics)	3	А
Master of Science in	n Business Engineering (Doub	le Degree)(main subject Data Analyt	ics) 3	А
	n Electromechanical Engineer	ng(main subject Electrical Power	3	А
Engineering) Master of Science ii	n Flectrical Engineering (main	subject Electronic Circuits and Syste	ems) 3	А
		ing(main subject Maritime Engineer	-	A
	n Electromechanical Engineer		3	A
Construction)				
Master of Science in Engineering)	n Electromechanical Engineer	ing(main subject Mechanical Energy	3	А
	n Business Engineering (Doub	le Degree)(main subject Operations	3	А
	n Business Engineering(main	subject Operations Management)	3	А
Master of Science in	n Biomedical Engineering		3	А
Master of Science in	n Biomedical Engineering		3	А
Master of Science in	n Chemical Engineering		3	А
Master of Science in	n Chemical Engineering		3	А
Master of Science in	n Civil Engineering		3	А
Master of Science in	n Civil Engineering		3	А
Master of Science in	n Engineering Physics		3	А
Master of Science in	n Engineering Physics		3	А
	n Fire Safety Engineering		3	А
Master of Science in	n Industrial Design Engineerir	g Technology	3	А
Master of Science in	n Information Engineering Tec	hnology	3	А
Master of Science in	n Materials Engineering		3	А
Master of Science in	n Sustainable Materials Engin	eering	3	А

Teaching languages

Dutch

Keywords

ethics, deontology, engineering, technique, society

Position of the course

Provide a usable conceptual framework to the graduating engineer to stimulate a sense of public responsibility with respect to technological developments. Within the limited framework of this course it is not possible to cover an in depth treatment of the wide range of subjects related to ethical and social aspects of technological developments. On the basis of his acquaintance with the technical world in which engineers work, the lecturer will use an approach which stimulates the students to think, in a structured and independent way, about the role of technology in society and about ethically justified choices in relation to technical developments. The precise subjects may change from year to year. Examples of such subjects are listed hereafter.

Contents

The course starts with an overview of the main schools in normative ethics (utilitarianism, virtue ethics and deontology). De analysis of these theories is oriented towards the profession of the engineer. A presentation of the importance of professional societies, codes of ethics (like the IEEE Code of ethics) and specific moral capacities of the engineer is given. In the second part, a discussion of typicial problems of engineering ethics takes place: whistle blowing, loyalty to the employer, responsibility and complicity for products and processes, dual use, evaluation of risks etc.

Initial competences

- Analysing both abstract and concrete problems
- Taking a stance regarding a problem
- Reflecting critically about the engineering profession
- Analysing societal consequences of new developments within the field of
- engineering or related fields
- Being conscious about the role of engineers in society

Final competences

- 1 Describe, recognise and discern the main theories in normative ethics
- 2 Describe the core aspects in deontologic codes for professional engineers
- 3 Indicate the advantages and shortcomings of a deontologic code
- 4 Name and define the different models for allocating liability within a company
- 5 Indicate the advantages and disadvantages of different models for assigning responsibility
- 6 Assessing in which particular situations whistleblowing is justified or even ethically required
- 7 Assessing the limits of loyalty towards an employer
- 8 Explaining the importance and shortcomings of the non-compete clause
- 9 Discerning the different principles that are used in the practice of risk reduction
- 10 Being aware of the limits of risk-assessments in making ethical decisions
- 11 Having an insight into the complexity of ethical decision making in relation to technological developments
- 12 Reflecting about the role of technology in society
- 13 Making ethically sound decisions in relation to the development of technology
- 14 Integrating societal responsibility and engagement in the engineering profession
- 15 Having an insight into the dilemma of dual use research and technology

Conditions for credit contract

Access to this course unit via a credit contract is determined after successful competences assessment

Conditions for exam contract

This course unit cannot be taken via an exam contract

Teaching methods

Seminar, Lecture

Extra information on the teaching methods

Classroom lectures and seminars to (i) illustrate actual moral case-studies in engineering praxis and (ii) to prepare for the exam.

Study material

None

References

Course content-related study coaching

Assessment moments

end-of-term assessment

Examination methods in case of periodic assessment during the first examination period

Written assessment open-book

Examination methods in case of periodic assessment during the second examination period

Written assessment open-book

Examination methods in case of permanent assessment

Possibilities of retake in case of permanent assessment

not applicable

Extra information on the examination methods

The students analyse and discuss a case-study from engineering praxis on the basis of the material discussed in the course.

Calculation of the examination mark

Evaluation during examination period