Course Specifications Valid in the academic year 2022-2023 ## Mechanics, Vibrations and Waves (1002417) | Course size | (nominal values; actual values may | depend on programme) | |-------------|------------------------------------|----------------------| |-------------|------------------------------------|----------------------| Credits 5.0 Study time 150 h Contact hrs 50.0h ## Course offerings and teaching methods in academic year 2022-2023 | A (semester 1) | Dutch | Gent | lecture | 32.5h | |----------------|-------|------|----------------------------|-------| | | | | lecture: plenary exercises | 17.5h | | | | | online lecture | 0.0h | #### Lecturers in academic year 2022-2023 | Poelman, Dirk WEO4 | | lecturer-in-charge | | |--|----------------|--------------------|----------| | Offered in the following programmes in 2022-2023 | | crdts | offering | | Bachelor of Science in Bioscience Engineering(main subject Agricultural Sci | ences) | 5 | Α | | Bachelor of Science in Bioscience Engineering(main subject Cell and Gene E | Biotechnology) | 5 | Α | | Bachelor of Science in Bioscience Engineering(main subject Chemistry and Technology) | | 5 | Α | | Bachelor of Science in Bioscience Engineering(main subject Environmental | Technology) | 5 | Α | | Bachelor of Science in Bioscience Engineering(main subject Forest and Nat
Management) | ure | 5 | A | | Bachelor of Science in Bioscience Engineering(main subject Land, Water an | d Climate) | 5 | Α | | Bachelor of Science in Bio-Engineering (Joint Section) | | 5 | Α | ## Teaching languages Dutch ## Keywords Mechanics, mechanical vibrations and waves, statics, dynamics ## Position of the course Give the students a thorough training in basic physics, oriented both on basic principles and on practical applications. ## Contents Basic principles: what is physics; units; orders of magnitude; differentiation of kinematics - statics - dynamics Kinematics in one and more dimensions; axle systems; vector displacement, velocity and acceleration; relative movements; radial and tangential components of the acceleration Dynamics: laws of Newton; normal forces; frictional forces; free body diagrams Pseudo-forces: centrifugal and Coriolis force General gravitation; laws of Kepler Work, kinetic and potential energy; conservative and non-conservative forces; power Impulse; impulse and energy conservation; collisions in one and more dimensions Kinematics of rotational movements; angular displacement, angular velocity and acceleration Dynamics of rotational movements: torque, moment of inertia, angular momentum Statics: composition of forces and torques, balance of a rigid body, elasticity and fracture Vibrations: harmonic vibrations, damping, forced vibrations, quality factor Waves: transverse and longitudinal waves, standing waves, mathematical description of waves, intensity of waves, energy transport, Doppler effect (Approved) 1 #### Initial competences Final competences of secondary school or equivalent. Advise: required subjects in the curricula 'Mathematics' of the officially recognized educational networks in Flanders for programmes with at least 6 hours of mathematics training per week in the last two years of the secondary school program (general secundary education) are recommended. ### Final competences - 1 Have the ability to recognize and analyze forces in mechanical systems. - 2 Have the ability to apply Newtons laws for translations and rotations. - 3 Have the ability to describe and analyze mechanical vibrations. - 4 Be able to solve statics and dynamics problems using concepts of force, impulse, angular momentum and energy. #### Conditions for credit contract Access to this course unit via a credit contract is determined after successful competences assessment #### Conditions for exam contract This course unit cannot be taken via an exam contract #### Teaching methods Lecture: plenary exercises, Online lecture, Lecture #### Extra information on the teaching methods Plenary exercises: guided problem solving. The problems are made available in advance. ## Learning materials and price D.C. Giancoli, Physics for scientists and engineers, volume 1. Cost approx. \in 80. The powerpoint presentations, used in theory lessons, are made available to the students in electronic form. #### References D.C. Giancoli, Physics for scientists and engineers, volume 1 $\,$ R.C. Hibbeler, Engineering mechanics - Statics ## Course content-related study coaching Opportunity to ask questions before and after the lectures and electronically (through email or the electronic learning platform), both to the teacher and the research assistants. #### Assessment moments end-of-term assessment ## Examination methods in case of periodic assessment during the first examination period Written examination with multiple choice questions, Written examination with open questions #### Examination methods in case of periodic assessment during the second examination period Written examination with multiple choice questions, Written examination with open questions ## Examination methods in case of permanent assessment #### Possibilities of retake in case of permanent assessment examination during the second examination period is not possible ## Extra information on the examination methods The multiple choice part of the exam is graded with standard setting. #### Calculation of the examination mark Written exam: 40% of the marks on the multiple choice part, 60% on the open questions (theory and problem solving). (Approved) 2