

Course **Specifications**

Valid in the academic year 2022-2023

LA24

LA24

co-lecturer

co-lecturer crdtc

Metals and Metalloids in Environment and Technology (1002749)

Course size (nominal values; actual values may depend on programme)							
Credits 6.0	Study time 180 h	C	ontact hrs	60.0h			
Course offerings and teaching methods in academic year 2022-2023							
A (semester 1)	English	Gent		lecture	31.25h		
				practicum	25.0h		
				group work	1.25h		
				microteaching	2.5h		
Lecturers in academic	year 2022-2023						
Tack, Filip			LA24	lecturer-in-charge			
De Schamphelaere, Karel			LA22	co-lecturer			

Offered in the following programmes in 2022-2023
--

red in the following programmes in 2022-2023	crdts	offering
International Master of Science in Sustainable and Innovative Natural Resource Management	6	Α
Master of Science in Bioscience Engineering: Environmental Technology	6	Α
Master of Science in Environmental Science and Technology	6	Α
Exchange Programme in Bioscience Engineering: Chemistry and Bioprocess Technology (master's level)	6	А
Exchange Programme in Bioscience Engineering: Environmental Technology (master's level)	6	Α

Teaching languages

Du Laing, Gijs

Meers, Erik

English

Keywords

Metals, trace elements, metalloids, environmental chemistry, soil, water, remediation, bioavailability, ecotoxicity, risk assessment

Position of the course

This is a specializing course focusing on the occurrence, geochemical behaviour, human uses and related environmental issues of metals and metalloids in environment and technology.

Contents

- 1. Heavy metals and metalloids: environmental chemistry, general principles and processes
- 2. Assessment of baseline concentrations in soils legislation
- 3. Soil-plant relationship
- 4. Ecotoxicology, bioavailability and risk assessment of metals and metalloids in the environment
- 4. Physicochemical remediation techniques for metal-polluted water, sediments and soil
- 5. In situ management of heavy metals and metalloids in floodplains and river sediments
- 6. Phytomanagement
- 7. Environmental effects of mining activities and sustainable management of metal resources

Initial competences

- 1 Knowledge of general chemistry and analytical chemistry
- 2 Basic knowledge of environmental aquatic science
- 3 Basic knowledge of soil science

Final competences

(Approved) 1

- 1 Explain the nature and importance of metals and metalloids in environment and society
- 2 Explain chemical forms of occurrence and importance on the physico-chemical behaviour and ecotoxicity of metals and metalloids in the environment
- 3 Understand the meaning of background concentrations and the reasoning behind derivation of legal environmental standards
- 4 Depict interactions between metals and plants and the active role of plants in establishing homeostasis
- 5 Understand mechanisms determining bioavailability and ecotoxicity of metals and compute bioavailability based environmental risk and environmental criteria
- 6 Select and apply suitable remediation and containment apporaches for metal contaminated soils, sediments and water
- 7 Have insight in the potential negative effects of high concentrations of metals and metalloids on the environment and on humans

Conditions for credit contract

Access to this course unit via a credit contract is determined after successful competences assessment

Conditions for exam contract

This course unit cannot be taken via an exam contract

Teaching methods

Practicum, Group work, Microteaching, Lecture

Extra information on the teaching methods

Lecture: Lecture also includes guest lecturers from outside speakers (about 4 hrs). Group Work and microteaching: Students prepare a case related to phytoremediation and present it to the group.

Practicum: Students in small groups independently perform a plant pot experiment, collect the data, interpret the results and report.

Learning materials and price

Elaborated slides and selected scientific publications as background reading, made available through the electronic learning platform.

References

Course content-related study coaching

Professors and staff members of the department are available (upon appointment).

Assessment moments

end-of-term and continuous assessment

Examination methods in case of periodic assessment during the first examination period

Written examination with open questions

Examination methods in case of periodic assessment during the second examination period

Written examination with open questions

Examination methods in case of permanent assessment

Report, Peer assessment, Assignment

Possibilities of retake in case of permanent assessment

examination during the second examination period is possible in modified form

Calculation of the examination mark

Permanente evaluatie: 5/20 Periodegebonden evaluatie: 15/20

Students who eschew period aligned and/or non-period aligned evaluations for this course unit may be failed by the examiner.

(Approved) 2