

Course Specifications

From the academic year 2020-2021 up to and including the academic year

Aquaculture Genetics (1002795)

Course size Credits 6.0	(nominal values; actual values m			60.05	
	Study time 180 h	L	ontact hrs	60.0h	
Course offerings in acade					
A (semester 1)	English	Gent			
Lecturers in academic yea	ar 2022-2023				
Bossier, Peter LA22			lecturer-in-charge		
Offered in the following	programmes in 2022-2023			crdts	offerin
International Master	of Science in Health Managemen	t in Aquaculture	£	6	Α
Master of Science in Aquaculture				6	А
Exchange Programme in Bioscience Engineering: Agricultural Sciences (master's level)				6	Α
Exchange Programm level)	ie in Bioscience Engineering: Cell	and Gene Biotec	hnology (master's	6	А
Teaching languages					
English					
Keywords					
quantitative genetics	chniqus for detecting polymorphis , breeding programmes, chromos oidisation, genetic maps.				
Position of the course					
and molecular genet	tention is paid to specific method				
Contents					
2. Molecular techniqu 3. Qualitative genetic 4. Quantitative genet 5. F-statistics 6. Inbreeding	ics is, gynogenesis and triploidisation xual phenotype				
exercise) 3. Exercise on heritat	ecular tools in analysis of broodst		(paper group		

Initial competences

General biology, chemistry, biochemistry and basic knowledge on aquaculture.

Final competences

- 1 The student has insight into Mendelian genetics.
- 2 The student has basic knowledge on heritability and quantiative genetics.
- 3 The student has knowledge on molecular markers and their application.
- 4 The student has insight into breeding strategies in aquaculture (including sex reversal).
- 5 The student understands the importance of inbreeding and genetic drift in aquaculture.
- 6 The student has insight into the construction and the use of genetic maps.
- 7 The student is able to amplify and analyse (RFLP) a DNA fragment.

Conditions for credit contract

Access to this course unit via a credit contract is determined after successful competences assessment

Conditions for exam contract

This course unit cannot be taken via an exam contract

Teaching methods

Practicum, Guided self-study, Lecture, Seminar: coached exercises

Extra information on the teaching methods

Theory lectures: lectures based on powerpoint presentations. Practical classes: RFLP experiment in small groups. Exercises: guided exercises and calculations and group work on cloning strategies.

Learning materials and price

Printout of the powerpoint presentation will be available during all classes. Estimated cost of the printouts: 17 euro (included in fee that is paid in the beginning of the academical year).

References

An introduction to genetic analysis (Griffits et al.) Biotechnology and genetics in fisheries and aquaculture (Becuemont & Hoare) Practical genetics for aquaculture (Lutz G.) Principles of population genetics (Hartl & Clark)

Course content-related study coaching

Study guidance upon request by email or on appointment.

Assessment moments

end-of-term and continuous assessment

Examination methods in case of periodic assessment during the first examination period

Written examination

Examination methods in case of periodic assessment during the second examination period

Written examination

Examination methods in case of permanent assessment

Report, Participation, Assignment

Possibilities of retake in case of permanent assessment

examination during the second examination period is possible

Extra information on the examination methods

Period aligned evaluation: theory: written closed book exam. Non-period aligned evaluation: practical classes and exercise assessment: participation and report.

Calculation of the examination mark

Out of 20: 13 points attributed to written exam 2 points groupwork exercises 5 points attributed to report practical classes

Students that do not attend the practical classes without a valid reason, should retake the course the next academic year.

Students who eschew period aligned and/or non-period aligned evaluations for this course unit may be failed by the examinator.