

## Production and Health Management in Aquaculture Facilities (I002878)

**Course size** *(nominal values; actual values may depend on programme)*

**Credits 8.0** **Study time 200 h**

### Course offerings in academic year 2025-2026

A (semester 1) English Gent

### Lecturers in academic year 2025-2026

|                          |          |                    |
|--------------------------|----------|--------------------|
| Masaló Llora, Ingrid     | BARCELO3 | lecturer-in-charge |
| Gil Roig, José María     | BARCELO3 | co-lecturer        |
| Kallas Calot, Zein       | BARCELO3 | co-lecturer        |
| Oca, Joan                | BARCELO3 | co-lecturer        |
| Reig Puig, Maria Lourdes | BARCELO3 | co-lecturer        |

### Offered in the following programmes in 2025-2026

|                                                                     |       |          |
|---------------------------------------------------------------------|-------|----------|
| International Master of Science in Health Management in Aquaculture | crdts | offering |
|                                                                     | 8     | A        |

### Teaching languages

English

### Keywords

*Intensive aquaculture systems, Recirculation systems, facilities engineering, tank design, environmental enrichment, carrying capacity, bioprogramming, routine operations, stock control, feeding management, technical decisions, aquaculture economics, marketing strategies, cost-benefit analysis*

### Position of the course

*This course aims at introducing into the design of aquaculture facilities, the production management, and the analysis and improvement of the competitiveness aquaculture industries*

### Contents

#### 1. Production and health management

- Bioprogramming a fish farm facility to ensure health, welfare, and sustainability
- Influence of technical decisions on the viability of the operation
- Routine operations in an aquaculture facility: main criteria and procedures
- Stock control: monitoring growth, biomass, number of individuals, and stocking density
- Feeding management: method, frequency, time

#### 2. Engineering of aquaculture production systems

- Introduction to marine aquaculture systems
- Design criteria of aquaculture tanks and environmental enrichment
- Site considerations, pump selection, and flow control
- Required flow rates and carrying capacity in flow-through systems
- Water treatment
- Recirculating Aquaculture Systems

#### 3. Economics for Aquaculture

- Price Determination in Aquaculture Markets
- Agrofood Marketing
- Market trends, innovation, and consumer behavior
- Cost-Benefit Analysis

## **Initial competences**

*General biology, use of spread-sheets (i.e. excel)*

## **Final competences**

- 1 *Identify the criteria for defining the product, management and location to implement an aquaculture operation that guarantees the fish welfare and health*
- 2 *Develop the productive program (bioprogramming) of a fish farm according to these criteria*
- 3 *Identify the influence of technical decisions and routine operations on fish health*
- 4 *Identify the basic design criteria and engineering principles needed to set up and manage a successful aquaculture system*
- 5 *Asses the technical management of an aquaculture company, considering economic and welfare aspects*
- 6 *Asses the business management of an aquaculture company*
- 7 *Make decisions concerning the management and maintenance of the facilities*
- 8 *Understand the functioning of Aquaculture Markets and Value Chain*
- 9 *Knowledgeable about how aquaculture companies face market challenges*
- 10 *Understand the economic tools for decision making*

## **Conditions for credit contract**

This course unit cannot be taken via a credit contract

## **Conditions for exam contract**

This course unit cannot be taken via an exam contract

## **Teaching methods**

Group work, Seminar, Excursion, Lecture, Practical, Independent work

## **Study material**

None

## **References**

FAO (2020) *El estado mundial de la Pesca y la Acuicultura (SOFIA)* <http://www.fao.org/fishery/sofia/en>

HUGUENIN, J.E. and COLT J. 1989. *Design and operating guide for aquaculture seawater systems*. Elsevier. Amsterdam.

HUNTINGFORD, F. (2010) *Aquaculture and behavior*. Ed. Wiley-Blackwell, UK

JANA, S. (2018). *Socioeconomic Impacts and Cost-Benefit Analysis of Wastewater-Fed Aquaculture*. In *Wastewater Management Through Aquaculture* (pp. 269-284). Springer, Singapore.

JOBLING, M. (1994) *FISH BIONERGETICS*. Chapman and Hall. Fish and Fisheries Series 13. London, UK.

LAWSON, T. 1995. *Fundamentals of Aquacultural Engineering*. Chapman & Hall. New York

LEKANG, O.I. (2007) *AQUACULTURE ENGINEERING*. Blackwell Publishing, UK.

MIDLEN, A.B., REDDING, T.A. (1998) *Environmental management for aquaculture*. Chapman & Hall, London, UK

PILLAY, T.V. (1992) *Aquaculture and the Environment*. Fishing New Books. London, England.

RANKING, J. C. & JENSEN, F. B. (1993) *FISH ECOPHYSIOLOGY*. Fish and Fisheries Series, 9. Chapman & Hall, UK.

ROSS, L. G. and ROSS, B. (2000) *ANAESTHESIC AND SEDATIVE TECHNIQUES FOR AQUATIC ANIMALS*. Wiley-Blackwell; 2<sup>nd</sup> Edition, UK.

STICKNEY, R.R., McVEY, J. P. (2002) *Responsible marine aquaculture*. CABI Publishing, Oxon, UK

WEDEMEYER, G.A. (1996) *PHYSIOLOGY OF FISH IN INTENSIVE CULTURE SYSTEMS*. Chapman and Hall. USA.

TIMMONS, M.B. and LOSORDO, T.M. 1994. *Aquaculture water reuse systems: engineering design and management*. Elsevier. Amsterdam

TIMMONS, M.B. and EBELING, J.M. 2010. *Recirculating Aquaculture* (2nd Ed). NRAC Publication No. 401-2010

## **Course content-related study coaching**

*Teacher available for student counselling*

## **Assessment moments**

end-of-term and continuous assessment

**Examination methods in case of periodic assessment during the first examination period**

Peer and/or self assessment, Written assessment with open-ended questions, Written assessment, Assignment

**Examination methods in case of periodic assessment during the second examination period**

Oral assessment, Written assessment with open-ended questions

**Examination methods in case of permanent assessment**

Oral assessment, Skills test, Peer and/or self assessment, Assignment

**Possibilities of retake in case of permanent assessment**

examination during the second examination period is possible in modified form

**Calculation of the examination mark**

*30% Bioprogramming case-study; 30% Written examination; 30% Presentation of the individual report; Whole duties attendance and accomplishment 10%.*

*Students who eschew period aligned and/or non-period aligned evaluations for this course unit may be failed by the examiner.*