

Course Specifications

Valid in the academic year 2022-2023

Ecosystem - Atmosphere Processes (1002900)

Biogeochemistry and Global Change)

Course size	(nominal values; actual values may depend on programme)				
Credits 6.0	Study time 180 h	ı C	Contact hrs	56.0h	
Course offerings in academic year 2022-2023					
A (semester 1)	English	Gent			
Lecturers in academic y	rear 2022-2023				
Knohl, Alexander			GOTTINO1	lecturer-in-	charge
Offered in the following programmes in 2022-2023				crdts	offering
International Master of Science in Soils and Global Change (main subject Soil				6	А

Teaching languages

English

Keywords

Position of the course

Contents

In this course, the students will learn about ecosystem – atmosphere processes based on real datasets from forests and other terrestrial ecosystems. The student will be exposed to a quantitative analysis of the data and will gain basic insights into land surface modelling considering land use as well as climate change. They will formulate these processes in the programming language R and describe them quantitatively.

Initial competences

none

Final competences

Unterstanding the carbon and water cycle of terrestrial ecosystems requires a solid understanding of biogeophysical and biogeochemical processes at the ecosystem atmosphere interface. These processes are directly affected by human induced alterations of the climate system such as climate change and land use.

Conditions for credit contract

This course unit cannot be taken via a credit contract

Conditions for exam contract

This course unit cannot be taken via an exam contract

Teaching methods

Seminar, Lecture, Seminar: coached exercises

Learning materials and price

References

Course content-related study coaching

Assessment moments

Examination methods in case of periodic assessment during the first examination period

Examination methods in case of periodic assessment during the second examination period

Examination methods in case of permanent assessment

Possibilities of retake in case of permanent assessment

examination during the second examination period is possible in modified form

Calculation of the examination mark