Specifications Valid in the academic year 2021-2022 # Plant Physiology (0000182) Due to Covid 19, the education and assessment methods may vary from the information displayed in the schedules and course details. Any changes will be communicated on Ufora. Course size (nominal values; actual values may depend on programme) Study time 90 h Credits 3.0 Contact hrs 30.0h Course offerings and teaching methods in academic year 2021-2022 A (semester 2) English Incheon microteaching 2.5h > lecture 25.0h group work 2.5h Lecturers in academic year 2021-2022 WE09 Depuydt, Stephen lecturer-in-charge crdts Offered in the following programmes in 2021-2022 offering 3 Α Bachelor of Science in Molecular Biotechnology Teaching languages English #### Keywords The plant cell and the plant cell wall, Plant water management and nutrition, Photosynthesis, Respiration, Photomorphogenesis and flowering, Plant hormones #### Position of the course This course will unveil some of the most enthralling mysteries of plant life and show the uniqueness of plants as a life form. The topics that are dealt with in this course will demonstrate how plants work and function, and highlight cellular and biochemical processes needed to complete a plant's life cycle, in function of an ever changing environment. The course focusses mainly on higher plants and tackles physiologial processes from a holistic perspective, i.e. focusing on the interrelationship between all organs of the plant. Next to that, the relationship between the plant (function) and the abiotic environment are deepened out. #### Contents - 1. The plant cell wall (composition and function) - 2. Water Management and nutrition: - Water balance of the plant: Water potential and osmatic potential; Water balance of the plant (availability of water in the soil, water uptake by the root, upward water transport); Transpiration - Mineral nutrition: Essential elements and nitrogen fixation and assimilation - 3. Photosynthesis and Respiration: - Chloroplast: structure and function, light dependent reactions, Calvin Benson cycle reactions - · Respiration and photorespiration - 4. Photomorphogenesis and flowering: - Phytochromes (molecular and spectral properties of phytochrome, localisation, signal transduction, physiological action of phytochrome) - Blue light/UV-A photoreceptors - UV-B photoreceptors - Flower induction: Floral evocation, Photoperiodism, Vernalisation - 5. Plant hormones: - Biosynthesis, transport, homeostasis and physiological effects of Auxins, Gibberellins, Cytokinins, Ethylene, Abscisic acid, Brassinosteroids, Jasmonic Acid, Salicylic Acid and Strigolactones. (Approved) 1 # Initial competences Basics of general biology, plant biology, biochemistry and molecular biology #### Final competences - 1 To know and understand the physiological processes in higher plants. - 2 To understand the interaction of plants with their environment, and the adjustment of plant growth processes to a changing environment. - 3 To integrate the built of plants and the function of plants with the requirements needed for the completion of a plant's life cycle. - 4 To gain insight into the importance of plants as primary producers for a sustainable biobased economy. - 5 To have acquired a solid basis for further specialized studies in plant developmental biology, plant biotechnology, plant production, molecular physiology etc. - 6 To be able to understand, use and explain terminology in plant physiology to expert and laymans audiences. - 7 To appreciate the interdisciplinary character of plant physiology and to relate to cell biology, botany, molecular biology and molecular genetics. # Conditions for credit contract Access to this course unit via a credit contract is determined after successful competences assessment #### Conditions for exam contract This course unit cannot be taken via an exam contract ### Teaching methods Group work, Microteaching, Lecture # Extra information on the teaching methods Lectures, case studies, microteaching # Learning materials and price Written syllabus and handouts of the PowerPoint slides will be provided. Syllabus of the practical exercises will be available. #### References Plant Physiology [Hardcover], Lincoln Taiz (Author), Eduardo Zeiger (Author) # Course content-related study coaching Weekly office hours, during which the student can pass by for more information, will be anounced at the beginning of the course. Feedback during permanent evaluation moments will be given. The course will end with a Q&A session (1-2 hrs) during which students can ask for explanation of certain topics. #### **Assessment moments** end-of-term and continuous assessment # Examination methods in case of periodic assessment during the first examination period Written examination with open questions # Examination methods in case of periodic assessment during the second examination period Written examination with open questions # Examination methods in case of permanent assessment Report, Participation # Possibilities of retake in case of permanent assessment examination during the second examination period is not possible ### Extra information on the examination methods The understanding of physiology of higher plants will be assessed via open questions and figure questions in which the emphasis will be to explain broad concepts in terms of intrinsic plant development and growth as well as in terms of the relationship with the environment. # Calculation of the examination mark Periodic evaluation = 18/20; micro-teaching + groupwork = 2/20 (Approved) 2 (Approved) 3